精英家教网 > 高中数学 > 题目详情
17.设函数f(x)=$\sqrt{x-2}+\sqrt{11-x}$的最大值为M.
(Ⅰ)求实数M的值;
(Ⅱ)求关于x的不等式|x-$\sqrt{2}$|+|x+2$\sqrt{2}$|≤M的解集.

分析 (Ⅰ)利用基本不等式以及重要不等式,转化求解函数的最值,即可求实数M的值;
(Ⅱ)通过绝对值不等式的几何意义,之间求关于x的不等式|x-$\sqrt{2}$|+|x+2$\sqrt{2}$|≤M的解集.

解答 (本小题满分10分)选修4-5:不等式选讲
解:(I)因为a,b>0时,$({\frac{a+b}{2})}^{2}≤\frac{{a}^{2}+{b}^{2}}{2}$,
所以$f(x)=\sqrt{x-2}+\sqrt{11-x}≤2\sqrt{\frac{(x-2)+(11-x)}{2}}=3\sqrt{2}$,
当且仅当$x=\frac{13}{2}$时等号成立. 故函数f(x)的最大值$M=3\sqrt{2}$---------------(5分)
(Ⅱ)由绝对值三角不等式可得$|{x-\sqrt{2}}|+|{x+2\sqrt{2}}|≥|{(x-\sqrt{2})-(x+2\sqrt{2})}|=3\sqrt{2}$.
所以不等式$|x-\sqrt{2}|+|x+2\sqrt{2}|≤3\sqrt{2}$的解x就是
方程$|x-\sqrt{2}|+|x+2\sqrt{2}|=3\sqrt{2}$的解.
由绝对值的几何意义得,当且仅当$-2\sqrt{2}≤x≤\sqrt{2}$时,$|x-\sqrt{2}|+|x+2\sqrt{2}|=3\sqrt{2}$.
所以不等式$|x-\sqrt{2}|+|x+2\sqrt{2}|≤M$的解集为:$\{x|-2\sqrt{2}≤x≤\sqrt{2}\}$--------------(10分)

点评 本题考查绝对值不等式的解法,绝对值不等式的几何意义,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知曲线y=$\frac{1}{3}{x^3}+\frac{4}{3}$,
(1)求f′(5)的值
(2)求曲线在点P(2,4)处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=ex+ax+b(a,b∈R,e是自然对数的底数)在点(0,1)处的切线与x轴平行.
(Ⅰ)求a,b的值;
(Ⅱ)若对一切x∈R,关于x的不等式f(x)≥(m-1)x+n恒成立,求m+n的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.海水受日月的引力,在一定的时候发生涨落的现象叫潮,一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋.下面是某港口在某季节每天的时间与水深关系表:
时刻2:005:008:0011:0014:0017:0020:0023:00
水深(米)7.55.02.55.07.55.02.55.0
经长期观测,这个港口的水深与时间的关系,可近似用函数f(t)=Asin(ωt+ϕ)+b$(A,ω>0,|ϕ|<\frac{π}{2})$来描述.
(1)根据以上数据,求出函数f(t)=Asin(ωt+ϕ)+b的表达式;
(2)一条货船的吃水深度(船底与水面的距离)为4.25米,安全条例规定至少要有2米的安全间隙(船底与洋底的距离),该船在一天内(0:00~24:00)何时能进入港口然后离开港口?每次在港口能停留多久?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.执行如图所示的程序框图,若输出的a的值为15,则判断框应填写(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.阅读程序框图,则该程序运行后输出的k的值是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.命题p:$\frac{x^2}{a-2}-\frac{y^2}{6-a}=1$是双曲线的方程;命题q:函数f(x)=(5-a)x在R上为增函数.若p∨q为真,p∧q为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.三棱锥P-ABC四个顶点都在球O上,已知PA⊥AB,PA⊥AC,PA=2,BC=3,∠BAC=60°,则球O的体积是$\frac{32π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.下列说法正确的序号是②④.
①第一象限角是锐角;
②函数$y={log_{\frac{1}{2}}}({{x^2}+2x-3})$的单调增区间为(-∞,-3);
③函数f(x)=|cosx|是周期为2π的偶函数;
④方程$x=tanx{,_{\;}}x∈({-\frac{π}{2},\frac{π}{2}})$只有一个解x=0.

查看答案和解析>>

同步练习册答案