精英家教网 > 高中数学 > 题目详情
6.三棱锥P-ABC四个顶点都在球O上,已知PA⊥AB,PA⊥AC,PA=2,BC=3,∠BAC=60°,则球O的体积是$\frac{32π}{3}$.

分析 根据已知求出△ABC外接圆的半径,从而可求该三棱锥的外接球的半径,即可求出三棱锥的外接球体积.

解答 解:在△ABC中,BC=3,∠BAC=60°,
故△ABC的外接圆半径r=$\frac{1}{2}•$$\frac{3}{\frac{\sqrt{3}}{2}}$=$\sqrt{3}$,
故棱锥的外接球的半径R=$\sqrt{{r}^{2}+{(\frac{PA}{2})}^{2}}$=2,
故棱锥的外接球的体积V=$\frac{4}{3}{πR}^{3}$=$\frac{32π}{3}$,
故答案为:$\frac{32π}{3}$

点评 本题考查三棱锥的外接球体积,考查学生的计算能力,确定三棱锥的外接球的半径是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=|x|+|2-x|,若函数g(x)=f(x)-a的零点个数不为0,则a的取值范围是[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数f(x)=$\sqrt{x-2}+\sqrt{11-x}$的最大值为M.
(Ⅰ)求实数M的值;
(Ⅱ)求关于x的不等式|x-$\sqrt{2}$|+|x+2$\sqrt{2}$|≤M的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.以下是一个用基本算法语句编写的程序,根据程序画出其相应的程序框图.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=1-$\frac{1}{x+1}$,则f(2)+f(3)+…f(10)+f($\frac{1}{2}$)+f($\frac{1}{3}$)+…f($\frac{1}{10}$)=9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数$y={log_{\frac{1}{4}}}({-{x^2}+2x+3})$的单调增区间是(  )
A.(-1,1]B.(-∞,1)C.[1,3)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数f(x)=(x+1)ex在点(0,1)处的切线方程为(  )
A.2x-y-1=0B.2x-y+1=0C.x-2y-1=0D.x-2y+1=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列式子中,不能化简为$\overrightarrow{PQ}$的是(  )
A.$\overrightarrow{AB}+\overrightarrow{PA}+\overrightarrow{BQ}$B.$\overrightarrow{AB}+\overrightarrow{PC}+\overrightarrow{BA}-\overrightarrow{QC}$C.$\overrightarrow{QC}+\overrightarrow{CQ}-\overrightarrow{QP}$D.$\overrightarrow{PA}+\overrightarrow{AB}-\overrightarrow{BQ}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在△AOB中,OA=1,OB=2,∠AOB=120°,MN是过点O的一条线段,且OM=ON=3,若$\overrightarrow{OC}=2λ\overrightarrow{OA}+2(1-λ)\overrightarrow{OB},(λ∈$R),则$\overrightarrow{CM}•\overrightarrow{CN}$的最小值为-$\frac{60}{7}$.

查看答案和解析>>

同步练习册答案