精英家教网 > 高中数学 > 题目详情
15.下列式子中,不能化简为$\overrightarrow{PQ}$的是(  )
A.$\overrightarrow{AB}+\overrightarrow{PA}+\overrightarrow{BQ}$B.$\overrightarrow{AB}+\overrightarrow{PC}+\overrightarrow{BA}-\overrightarrow{QC}$C.$\overrightarrow{QC}+\overrightarrow{CQ}-\overrightarrow{QP}$D.$\overrightarrow{PA}+\overrightarrow{AB}-\overrightarrow{BQ}$

分析 利用向量的三角形法则即可判断出.

解答 解:A.$\overrightarrow{AB}+\overrightarrow{PA}+\overrightarrow{BQ}$=$\overrightarrow{PQ}$;
B.$\overrightarrow{AB}+\overrightarrow{PC}+\overrightarrow{BA}-\overrightarrow{QC}$=$\overrightarrow{PC}+\overrightarrow{CQ}$=$\overrightarrow{PQ}$;
C.$\overrightarrow{QC}+\overrightarrow{CQ}$-$\overline{QP}$=$-\overrightarrow{QP}$=$\overrightarrow{PQ}$;
D.$\overrightarrow{PA}+\overrightarrow{AB}-\overrightarrow{BQ}$=$\overrightarrow{PB}+\overrightarrow{QB}$≠$\overrightarrow{PQ}$.
故选:D.

点评 本题考查了向量的三角形法则,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.海水受日月的引力,在一定的时候发生涨落的现象叫潮,一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋.下面是某港口在某季节每天的时间与水深关系表:
时刻2:005:008:0011:0014:0017:0020:0023:00
水深(米)7.55.02.55.07.55.02.55.0
经长期观测,这个港口的水深与时间的关系,可近似用函数f(t)=Asin(ωt+ϕ)+b$(A,ω>0,|ϕ|<\frac{π}{2})$来描述.
(1)根据以上数据,求出函数f(t)=Asin(ωt+ϕ)+b的表达式;
(2)一条货船的吃水深度(船底与水面的距离)为4.25米,安全条例规定至少要有2米的安全间隙(船底与洋底的距离),该船在一天内(0:00~24:00)何时能进入港口然后离开港口?每次在港口能停留多久?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.三棱锥P-ABC四个顶点都在球O上,已知PA⊥AB,PA⊥AC,PA=2,BC=3,∠BAC=60°,则球O的体积是$\frac{32π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若$sin(π+α)=\frac{1}{3}$,则sinα=(  )
A.$\frac{1}{3}$B.$-\frac{1}{3}$C.3D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知角α的终边经过P(3,4),求sinα,cosα,tanα.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=ax2-4ax+b(a>0)在区间[0,1]上有最大值1和最小值-2.
(1)求a,b的值;
(2)若不等式f(x)≥mx在x∈(0,+∞)上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.下列说法正确的序号是②④.
①第一象限角是锐角;
②函数$y={log_{\frac{1}{2}}}({{x^2}+2x-3})$的单调增区间为(-∞,-3);
③函数f(x)=|cosx|是周期为2π的偶函数;
④方程$x=tanx{,_{\;}}x∈({-\frac{π}{2},\frac{π}{2}})$只有一个解x=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.曲线y=Asin2ωx+k(A>0,k>0)在区间$[0\;,\;\frac{π}{ω}]$上截直线y=4与y=-2所得的弦长相等且不为0,则A+k的取值范围是(4,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若存在两个正实数x、y,使得等式x+a(y-2ex)(lny-lnx)=0成立,其中e为自然对数的底数,则实数a的取值范围为a<0或a≥$\frac{1}{e}$.

查看答案和解析>>

同步练习册答案