精英家教网 > 高中数学 > 题目详情
3.设函数f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^x}-7,x<0\\{x^2}{,_{\;}}x≥0\end{array}$,若f(a)=1,则实数a的值为(  )
A.-3,-1B.3,1C.-3,1D.-3,-1,1

分析 根据分段函数的表达式分别进行求解即可.

解答 解:若a≥0,由f(a)=1,得a2=1,得a=1,
若a<0,由f(a)=1,得($\frac{1}{2}$)a-7=1,得($\frac{1}{2}$)a=8,则a=-3,
综上a=-3或a=1,
故选:C.

点评 本题主要考查函数值的计算,根据分段函数表达式,利用分类讨论的思想进行求解即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥平面ABCD,Q为AD的中点,PA=PD,BC=$\frac{1}{2}$AD=1,CD=$\sqrt{3}$.
(1)求证:平面PQB⊥平面PAD;
(2)若异面直线AB与PC所成角为60°,求PA的长;
(3)在(2)的条件下,求平面PQB与平面PDC所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知一个几何体的三视图如图所示,则该几何体的体积是$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知圆M:(x-1)2+(y-1)2=4,直线l过点P(2,3)且与圆M交于A,B两点,且|AB|=2$\sqrt{3}$.
(Ⅰ)求直线l方程;
(Ⅱ)设Q(x0,y0)为圆M上的点,求x02+y02的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知全集U={x|-3≤x<3,x∈Z},集合A={x|x2+2x-3=0},则∁UA={-2,-1,0,2}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知sinα+cosα=$\frac{{\sqrt{10}}}{5}$,则tanα=(  )
A.-3或$-\frac{1}{3}$B.-3C.$-\frac{1}{3}$D.3或$-\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知{an}为等比数列,且an>0,a2a4+2a3a5+a4a6=9,那么a3+a5=(  )
A.3B.9C.12D.18

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在平面直角坐标系xOy中,已知A(3,0),B(0,4),C(6,t).
(1)若点A,B,C在同一条直线上,求实数t的值;
(2)若△ABC是以BC为底边的等腰三角形,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知数列{an}满足an+1=$\left\{\begin{array}{l}2{a_n},0<{a_n}≤\frac{1}{2}\\ 2{a_n}-1,\frac{1}{2}<{a_n}<1\end{array}$且a1=$\frac{3}{5}$,则a2016=$\frac{4}{5}$.

查看答案和解析>>

同步练习册答案