精英家教网 > 高中数学 > 题目详情
如图,四棱锥中,底面为平行四边形,是正三角形,平面平面
(1)求证:
(2)求三棱锥的体积.
(1)见解析    (2)
(1)由,利用余弦定理,可得

,又由平面平面,可得平面,又平面,故
(2)解:由(1)知平面,又平面,故平面平面.取的中点,连结,由于是正三角形,故
可知平面,即为三棱锥的高.
在正中,,故
三棱锥的体积
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在正三棱柱ABC-A1B1C1中,AB=AA1,D、E分别是棱A1B1、AA1的中点,点F在棱AB上,且
(1)求证:EF∥平面BDC1;  
(2)求证:平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知正四棱柱中,.
(1)求证:
(2)求二面角的余弦值;
(3)在线段上是否存在点,使得平面平面,若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(2011•浙江)如图,在三棱锥P﹣ABC中,AB=AC,D为BC的中点,PO⊥平面ABC,垂足O落在线段AD上,已知BC=8,PO=4,AO=3,OD=2
(1)证明:AP⊥BC;
(2)在线段AP上是否存在点M,使得二面角A﹣MC﹣β为直二面角?若存在,求出AM的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,四边形ABCD是平行四边形,且AC⊥CD,PA=AD,M,Q分别是PD,BC的中点.
(1)求证:MQ∥平面PAB;
(2)若AN⊥PC,垂足为N,求证:MN⊥PD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,且底面ABCD,,E是PA的中点.

(1)求证:平面平面EBD;
(2)若PA=AB=2,求三棱锥P-EBD的高.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在△ABC中,AB=AC=5,BC=6,PA⊥平面ABC,PA=8,则P到BC的距离是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

[2014·长春质检]如图,四棱锥P-ABCD的底面是一直角梯形,AB∥CD,BA⊥AD,CD=2AB,PA⊥底面ABCD,E为PC的中点,则BE与平面PAD的位置关系为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

[2012·辽宁高考]已知正三棱锥P-ABC,点P,A,B,C都在半径为的球面上,若PA,PB,PC两两相互垂直,则球心到截面ABC的距离为________.

查看答案和解析>>

同步练习册答案