精英家教网 > 高中数学 > 题目详情
如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,且底面ABCD,,E是PA的中点.

(1)求证:平面平面EBD;
(2)若PA=AB=2,求三棱锥P-EBD的高.
(1)证明过程详见解析;(2).

试题分析:本题主要以四棱锥为几何背景考查线面垂直、面面垂直、等体积法等基础知识,考查空间想象能力、逻辑推理能力、计算能力.第一问,利用线面垂直的性质得PA⊥BD,又因为BD⊥PC,利用线面垂直的判定得到BD⊥平面PAC,最后利用面面垂直的判定得到平面PAC⊥平面EBD;第二问,由于BD⊥平面PAC,所以BDAC,所以ABCD是菱形,可求出的面积,由于BD⊥平面PAC,所以BDOE,所以可求出的面积,用等体积法求出三棱锥P-EBD的体积,通过列出的等式解出高的值.
试题解析:(1)因为PA⊥平面ABCD,所以PABD
BDPC,所以BD⊥平面PAC
因为BDÌ平面EBD,所以平面PAC⊥平面EBD.     5分

(2)由(1)可知,BDAC,所以ABCD是菱形,∠BAD=120°.
所以.         7分
ACBDO,连结OE,则(1)可知,BDOE
所以.          9分
设三棱锥P-EBD的高为h,则
,即,解得. 12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,底面为平行四边形,是正三角形,平面平面
(1)求证:
(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直三棱柱中, ,的中点,△是等腰三角形,的中点,上一点.

(1)若∥平面,求
(2)求直线和平面所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,底面是平行四边形,平面的中点.

(1)求证:平面
(2)若以为坐标原点,射线分别是轴、轴、轴的正半轴,建立空间直角坐标系,已经计算得是平面的法向量,求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在棱长为2的正方体ABCD-A1B1C1D1中,E为棱CC1的中点。

(1)求证:BD⊥AE;
(2)求点A到平面BDE的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知m和n是两条不同的直线,α和β是两个不重合的平面,那么下面给出的条件中一定能推出m⊥β的是(  )
A.α⊥β,且m?αB.m∥n,且n⊥β
C.α⊥β,且m∥αD.m⊥n,且n∥β

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知三条直线,三个平面,下列四个命题中,正确的是(    )
A.B.C.D.m∥n

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知平面和直线,给出条件:
;②;③;④;⑤
(1)当满足条件       时,有;(2)当满足条件      时,有

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在长方形中,的中点,为线段(端点除外)上一动点,现将沿折起,使平面平面.在平面内过点为垂足,设,则的取值范围是________

查看答案和解析>>

同步练习册答案