精英家教网 > 高中数学 > 题目详情
如图,在长方形中,的中点,为线段(端点除外)上一动点,现将沿折起,使平面平面.在平面内过点为垂足,设,则的取值范围是________

试题分析:分析:如图,过,垂足为,连接

∵平面平面,,
平面,∴.因为,∴平面.
容易得到,当接近点时,接近的中点,当接近点时,接近的四等分点,
∴t的取值范围是.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,且底面ABCD,,E是PA的中点.

(1)求证:平面平面EBD;
(2)若PA=AB=2,求三棱锥P-EBD的高.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在空间四边形中,分别是上的点,分别是上的点,且,求证:三条直线相交于同一点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在棱长为的正方体中,点是棱的中点,点在棱上,且满足.

(1)求证:
(2)在棱上确定一点,使四点共面,并求此时的长;
(3)求平面与平面所成二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P­ABCD中,PD⊥底面ABCD,底面ABCD是直角梯形,DCAB,∠BAD=90°,且AB=2AD=2DC=2PD=4,EPA的中点.
 
(1)求证:DE∥平面PBC
(2)求证:DE⊥平面PAB.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)如图,平面平面,四边形为矩形,△为等边三角形.的中点,

(1)求证:
(2)求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

mn是两条不同的直线,αβ是两个不同的平面,下列命题中正确的是(  ).
A.若αβm?αn?β,则mn
B.若αβm?αn?β,,则mn
C.若mnm?αn?β,则αβ
D.若mαmnnβ,则αβ

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知集合={直线},={平面},,若,有四个命题①其中所有正确命题的序号是( )
A.①②③B.②③④C.②④D.④

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知l,m,n是三条不同的直线,α,β是不同的平面,则下列条件中能推出α⊥β的是(     )
A.lα,mβ,且l⊥m
B.lα,mβ,nβ,且l⊥m,l⊥n
C.mα,nβ,m//n,且l⊥m
D.lα,l//m,且m⊥β

查看答案和解析>>

同步练习册答案