精英家教网 > 高中数学 > 题目详情
已知函数f(x)=log
1
2
(
1
2
sin2x)

(1)求它的定义域、值域;
(2)判断它的奇偶性;
(3)判断它的周期性;
(4)写出函数的单调递增区间.
(1)由
1
2
sin2x>0
,∴sin2x>0,∴2kπ<2x<2kπ+π,k∈Z,解得kπ<x<kπ+
π
2
,k∈Z

故函数f(x)的定义域为{x|kπ<x<kπ+
π
2
,k∈Z}
…(3分)
0<
1
2
sin2x≤
1
2
,故log
1
2
(
1
2
sin2x)≥1

故函数f(x)的值域为[1,+∞).…(5分)
(2)因为函数f(x)的定义域为{x|kπ<x<kπ+
π
2
,k∈Z}
,关于原点不对称,故此函数为非奇非偶函数.…(7分)
(3)因为log
1
2
(
1
2
sin2(x+π))=log
1
2
(
1
2
sin2x)
,所以此函数的周期为T=π.…(10分)
(4)根据复合函数的单调性,故求函数t=sin2x的单调递减区间.
又考虑到原函数的定义域,故2kπ+
π
2
<2x<2kπ+π,k∈Z

即为kπ+
π
4
<x<kπ+
π
2
,k∈Z

故函数的递增区间为(kπ+
π
4
,kπ+
π
2
),k∈Z.…(14分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-
3
2
ax2-(a-3)x+b

(1)若函数f(x)在P(0,f(0))的切线方程为y=5x+1,求实数a,b的值:
(2)当a<3时,令g(x)=
f′(x)
x
,求y=g(x)在[l,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2-alnx
的图象在点P(2,f(2))处的切线方程为l:y=x+b
(1)求出函数y=f(x)的表达式和切线l的方程;
(2)当x∈[
1
e
,e]
时(其中e=2.71828…),不等式f(x)<k恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=
12
x2+a
(a为常数),直线l与函数f(x)、g(x)的图象都相切,且l与函数f(x)的图象的切点的横坐标为1.
(1)求直线l的方程及a的值;
(2)当k>0时,试讨论方程f(1+x2)-g(x)=k的解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
13
x3+x2+ax

(1)讨论f(x)的单调性;
(2)设f(x)有两个极值点x1,x2,若过两点(x1,f(x1)),(x2,f(x2))的直线l与x轴的交点在曲线y=f(x)上,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-
32
ax2+b
,a,b为实数,x∈R,a∈R.
(1)当1<a<2时,若f(x)在区间[-1,1]上的最小值、最大值分别为-2、1,求a、b的值;
(2)在(1)的条件下,求经过点P(2,1)且与曲线f(x)相切的直线l的方程;
(3)试讨论函数F(x)=(f′(x)-2x2+4ax+a+1)•ex的极值点的个数.

查看答案和解析>>

同步练习册答案