精英家教网 > 高中数学 > 题目详情

如图,已知四棱锥S-ABCD的底面ABCD是正方形,SA⊥底面ABCD,E是SC上的一点.

(1)求证:平面EBD⊥平面SAC;

(2)设SA=4,AB=2,求点A到平面SBD的距离;

答案:
解析:

  (1)证明:连接BD,AC交于O,连接EO

  因为SA⊥底面ABCD,所以BDAC、

  又因为BDSA,SA和AC都在平面SAC中,所以BD⊥平面SAC.

  因为OE在平面SAC中,所以BD⊥OE

  因为OE是平面SAC和平面EBD的交线,BD在平面EBD中,所以平面EBD⊥平面SAC.

  (2)已知SA=4,AB=2,则三棱锥,BD=,SA=SD=

  因为=BD

  ,所以点A到平面SBD的距离是


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知四棱锥S-ABCD的底面ABCD是边长为1的正方形,SA⊥平面ABCD,SA=2,E是侧棱SC上的一点.
(1)求证:平面EBD⊥平面SAC;
(2)求四棱锥S-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥S-ABCD的底面是边长为4的正方形,S在底面上的射影O落在正方形ABCD内,SO的长为3,O到AB,AD的距离分别为2和1,P是SC的中点.
(Ⅰ)求证:平面SOB⊥底面ABCD;
(Ⅱ)设Q是棱SA上的一点,若
AQ
=
3
4
AS
,求平面BPQ与底面ABCD所成的锐二面角余弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥S-A BCD是由直角梯形沿着CD折叠而成,其中SD=DA=AB=BC=l,AS∥BC,AB⊥AD,且二面角S-CD-A的大小为120°.
(Ⅰ)求证:平面ASD⊥平面ABCD;
(Ⅱ)设侧棱SC和底面ABCD所成角为θ,求θ的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•湖北模拟)如图,已知四棱锥S-ABCD中,△SAD是边长为a的正三角形,平面SAD⊥平面ABCD,四边形ABCD为菱形,∠DAB=60°,P为AD的中点,Q为SB的中点.
(Ⅰ)求证:PQ∥平面SCD;
(Ⅱ)求二面角B-PC-Q的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•江西模拟)(如图)已知四棱锥S-ABCD的底面ABCD是菱形,将面SAB,SAD,ABCD 展开成平面后的图形恰好为一正三角形S'SC.
(1)求证:在四棱锥S-ABCD中AB⊥SD.
(2)若AC长等于6,求异面直线AB与SC之间的距离.

查看答案和解析>>

同步练习册答案