精英家教网 > 高中数学 > 题目详情
设函数f(x)=ex+sinx,g(x)=x-2;
(1)求证:函数y=f(x)在[0,+∞)上单调递增;
(2)设P(x1,f(x1)),Q(x2,g(x2))(x1≥0,x2>0),若直线PQ∥x轴,求P,Q两点间的最短距离.
考点:导数在最大值、最小值问题中的应用,利用导数研究函数的单调性
专题:综合题,导数的综合应用
分析:(1)求出导函数f′(x),证明f′(0)≥0,即可得出结论;
(2)根据题意可知f(x1)=g(x2),令h(x)=ex+sinx-x+2(x≥0),求出其导函数,进而求得h(x)的最小值即为P、Q两点间的最短距离.
解答: (1)证明:x≥0时,f'(x)=ex+cosx≥1+cosx≥0,
所以函数y=f(x)在[0,+∞)上单调递增;---------------------------(6分)
(2)解:因为f(x1)=g(x2),所以ex1+sinx1=x2-2---------------------(8分)
所以P,Q两点间的距离等于|x2-x1|=|ex1+sinx1-x1+2|,------(9分)
设h(x)=ex+sinx-x+2(x≥0),则h'(x)=ex+cosx-1(x≥0),
记l(x)=h'(x)=ex+cosx-1(x≥0),则l'(x)=ex-sinx≥1-sinx≥0,
所以h'(x)≥h'(0)=1>0,------------------------------------(12分)
所以h(x)在[0,+∞)上单调递增,所以h(x)≥h(0)=3------------(14分)
所以|x2-x1|≥3,即P,Q两点间的最短距离等于3.---------------(15分)
点评:本题主要考查了利用函数的导数求出函数的单调性以及函数的极值问题,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

正三棱锥P-ABC的高为2,侧棱与底面所成的角为45°,则点A到侧面PBC的距离是(  )
A、
5
B、2
2
C、
2
D、
6
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合U=R,集合A={x|-l≤x≤3},集合B=|x|log2x<2},则A∩B=(  )
A、{x|1≤x≤3}
B、{x|-1≤x≤3}
C、{x|0<x≤3}
D、{x|-1≤x<0}

查看答案和解析>>

科目:高中数学 来源: 题型:

对甲、乙两名篮球运动员分别在100场比赛中的得分情况进行统计,做出甲的得分频率分布直方图如图所示,列出乙的得分统计表如下:
分值[0,10)[10,20)[20,30)[30,40)
场数10204030
(Ⅰ)估计甲在一场比赛中得分不低于20分的概率;
(Ⅱ)判断甲、乙两名运动员哪个成绩更稳定;(结论不要求证明)
(Ⅲ)在甲所进行的100场比赛中,以每场比赛得分所在区间中点的横坐标为这场比赛的得分,试计算甲每场比赛的平均得分.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为(-∞,-1)∪(1,+∞),对定义域内的任意x,满足f(x)+f(-x)=0,当x<-1时,f(x)=
1+ln(-x-1)
x+a
(a为常),且x=2是函数f(x)的一个极值点,
(Ⅰ)求实数a的值;
(Ⅱ)如果当x≥2时,不等式f(x)≥
m
x
恒成立,求实数m的最大值;
(Ⅲ)求证:n-2(
1
2
+
2
3
+
3
4
+…+
n
n+1
)<ln(n+1)

查看答案和解析>>

科目:高中数学 来源: 题型:

下面是用UNTIL语句设计的计算1×3×5×…×99的一个算法程序.

(Ⅰ)请将其补充完整;①
 
,②
 

(Ⅱ)绘制出该程序对应的流程图.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f1(x)=
2
1+x
,若fn+1(x)=f1[fn(x)],an=
fn(0)-1
fn(0)+2
,其中n∈N*
(1)求a1
(2)求证:{an}为等比数列,并求其通项公式;
(3)若T2n=a1+2a2+3a3+…2na2n,Qn=
4n2+n
36n2+36n+9
.其中n∈N*,试比较T2n与Qn的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-kx2,x∈R
(1)若k=
1
2
,求证:当x∈(0,+∞)时,f(x)>1;
(2)若f(x)在区间(0,+∞)上单调递增,试求k的取值范围;
(3)求证:(
2
14
+1)(
2
24
+1)(
2
34
+1)…(
2
n4
+1)<e4(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

某物体其运动方程为s=2t3,则物体在第t=3秒时的瞬时速度是
 

查看答案和解析>>

同步练习册答案