精英家教网 > 高中数学 > 题目详情
下面是用UNTIL语句设计的计算1×3×5×…×99的一个算法程序.

(Ⅰ)请将其补充完整;①
 
,②
 

(Ⅱ)绘制出该程序对应的流程图.
考点:程序框图
专题:算法和程序框图
分析:(Ⅰ)根据算法程序,即可得到结论,
(Ⅱ)根据程序,即可得到对应的流程图.
解答: 解:(Ⅰ)补充如下:
①i=i+2
②i>99   (或i>100,i≥100,i≥101)
(Ⅱ)流程图如右图:
故答案为:i=i+2;i>99.
点评:本题主要考查程序框图的识别和应用,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

长方体ABCD-A1B1C1D1,AB=2,AD=2,AA1=
6
,则点D到平面ACD1的距离是(  )
A、
1
2
B、
3
2
C、
6
2
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图示,在底面为直角梯形的四棱椎P-ABCD中,AD∥BC,∠ABC=90°,PA⊥平面ABCD,PA=4,AD=2,AB=2
3
,BC=6.
(1)求证:BD⊥平面PAC;
(2)求二面角A-PC-D的正切值;
(3)求点D到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且满足
Sn
an-2
=
a
a-2
 (a是常数且a>O,a≠2),bn=
2Sn
an
+1.
(1)求数列{an}的通项公式;
(2)若数列{bn}为等比数列,求{bn}的通项公式;
(3)在(2)的条件下,记cn=log3b1+log3b2+…+log3bn,?n∈N*是否存在正整数m,使
1
c1
+
1
c2
+…+
1
cn
m
3
都成立?若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ex+sinx,g(x)=x-2;
(1)求证:函数y=f(x)在[0,+∞)上单调递增;
(2)设P(x1,f(x1)),Q(x2,g(x2))(x1≥0,x2>0),若直线PQ∥x轴,求P,Q两点间的最短距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三棱锥P-ABC中,PA⊥AB,PA⊥AC,∠ACB=90°(如图)
(1)求证:PA⊥BC;
(2)若PA=AC=BC=1,求点C到平面PAB的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个袋中装有形状大小完全相同的球9个,其中红球3个,白球6个,每次随机取1个,直到取出3次红球即停止.
(Ⅰ)从袋中不放回地取球,求恰好取4次停止的概率P1
(Ⅱ)从袋中有放回地取球.
①求恰好取5次停止的概率P2
②记5次之内(含5次)取到红球的个数为ξ,求随机变量ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知an=(
1
3
n,把数列{an}的各项排列成如下的三角形状,记A(m,n)表示第m行的第n个数,则A(10,12)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

圆O的半径为3,P是圆O外一点,PO=5,PC是圆O的切线,C是切点,则PC=
 

查看答案和解析>>

同步练习册答案