精英家教网 > 高中数学 > 题目详情
已知三棱锥P-ABC中,PA⊥AB,PA⊥AC,∠ACB=90°(如图)
(1)求证:PA⊥BC;
(2)若PA=AC=BC=1,求点C到平面PAB的距离.
考点:点、线、面间的距离计算,直线与平面垂直的性质
专题:空间位置关系与距离
分析:(1)由已知条件推导出PA⊥平面ABC,由此能够证明PA⊥BC.
(2)由已知条件推导出平面PAB⊥平面ABC,过点C作CD⊥AB,交AB于点D,CD长就是点C到平面PAB的距离.由此能求出点C到平面PAB的距离.
解答: (1)证明:∵三棱锥P-ABC中,PA⊥AB,PA⊥AC,
AB∩AC=A,∴PA⊥平面ABC,
∵BC?平面ABC,∴PA⊥BC.(2)∵PA⊥平面ABC,且PA?平面PAB,
∴平面PAB⊥平面ABC,
过点C作CD⊥AB,交AB于点D,
由直二面角的性质得CD⊥平面PAB,
∴CD长就是点C到平面PAB的距离.
在Rt△ABC中,∵AC=BC=1,∠ACB=90°,
∴AB=
2
,∴CD=
1
2
AB
=
2
2

∴点C到平面PAB的距离为
2
2
点评:本题考查异面直线垂直的证明,考查点到直线的距离的求法,解题时要认真审题,注意合理地化空间问题为平面问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一个正三棱柱的每一条棱长都是a,则经过底面一边和相对侧棱的一个端点的截面(即图中△ACD)的面积为(  )
A、
7
4
a2
B、
7
2
a2
C、
6
3
a2
D、
7
a2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在长方体ABCD-A1B1C1D1中,AB=2,AA1=AD=1,点E、F、G分别是各自所在棱的中点.
(1)在棱A1D1所在的直线上是否存在一点P,使得PE与平面B1FG平行?若存在,确定点P的位置,并证明;否则说明理由.
(2)求点B1到平面EFG的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

在三棱柱ABC-A1B1C1中,侧面ABBA1为矩形,AB=1,AA1=
2
,D为AA1的中点,BD与AB1交于点O,CO⊥侧面ABBA1
(Ⅰ)求直线BC与直线AB1所成的角;
(Ⅱ)若OC=
3
OA,求直线C1D与平面ABC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

下面是用UNTIL语句设计的计算1×3×5×…×99的一个算法程序.

(Ⅰ)请将其补充完整;①
 
,②
 

(Ⅱ)绘制出该程序对应的流程图.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥S-ABCD的底面是正方形,侧棱SA⊥底面ABCD,过A作AE垂直SB交SB于E点,作AH垂直SD交SD于H点,平面AEH交SC于K点,且AB=1,SA=2.
(1)设点P是SA上任一点,试求PB+PH的最小值;
(2)求证:E、H在以AK为直径的圆上;
(3)求平面AEKH与平面ABCD所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lg(|x+1|+|x-2|+a).
(Ⅰ)当a=-5时,求函数f(x)的定义域;
(Ⅱ)若函数f(x)的定义域为R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图的框图,若输出结果为
1
2
,则输入的实数x的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

投掷一枚正方体骰子(六个面上分别标有1,2,3,4,5,6),向上的面上的数字记为a,又n(A)表示集合的元素个数,A={x||x2+ax+3|=1,x∈R},则n(A)=4的概率为
 

查看答案和解析>>

同步练习册答案