精英家教网 > 高中数学 > 题目详情
5.已知椭圆的长轴长为6,离心率为$\frac{1}{3}$,F2为椭圆的右焦点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)点M在圆x2+y2=8上,且M在第一象限,过M作圆x2+y2=8的切线交椭圆于P,Q两点,判断△PF2Q的周长是否为定值并说明理由.

分析 (Ⅰ)由题意可知:2a=6,$e=\frac{c}{a}=\frac{1}{3}$,求得a和c的值,由b2=a2-c2,求得b,写出椭圆方程;
(Ⅱ)设P(x1,y1),Q(x2,y2),分别求出|F2P|,|F2Q|,结合相切的条件可得|PM|2=|OP|2-|OM|2,可得$|{P{F_2}}|+|{PM}|=3-\frac{1}{3}{x_1}+\frac{1}{3}{x_1}=3$,同理|QF2|+|QM|=3,即可证明;

解答 解:(I)根据已知,设椭圆的标准方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,
∴2a=6,a=3,$e=\frac{c}{a}=\frac{1}{3}$,c=1;
b2=a2-c2=8,
$\frac{x^2}{9}+\frac{y^2}{8}=1$(4分)
(II)△PF2Q的周长是定值,
设P(x1,y1),Q(x2,y2),则$\frac{x_1^2}{9}+\frac{y_1^2}{8}=1$,
$|{P{F_2}}|=\sqrt{{{({{x_1}-1})}^2}+y_1^2}=\sqrt{{{({{x_1}-1})}^2}+8(1-\frac{x_1^2}{9})}=\sqrt{{{(\frac{x_1}{3}-3)}^2}}$,
∵0<x1<3,
∴$|{P{F_2}}|=3-\frac{x_1}{3}$,(7分)
在圆中,M是切点,
∴$|{PM}|=\sqrt{|OP{|^2}-|OM{|^2}}=\sqrt{x_1^2+y_1^2-8}=\sqrt{x_1^2+8(1-\frac{x_1^2}{9})-8}=\frac{1}{3}{x_1}$,(11分)
∴$|{P{F_2}}|+|{PM}|=3-\frac{1}{3}{x_1}+\frac{1}{3}{x_1}=3$,
同理|QF2|+|QM|=3,(13分)
∴|F2P|+|F2Q|+|PQ|=3+3=6,
因此△PF2Q的周长是定值6.…(14分)

点评 本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立可得根与系数的关系、弦长公式、直线与圆相切性质、勾股定理、三角形的周长问题,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.等差数列{an}中,Sn为其前n项和,若a5=10,S5=30,则$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+$\frac{1}{{S}_{3}}$+…+$\frac{1}{{S}_{2016}}$=$\frac{2016}{2017}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知三个球的半径R1、R2、R3满足R1+2R2=3R3,则它们的表面积S1、S2、S3满足的等量关系是(  )
A.S1+2S2=3S3B.$\sqrt{{S}_{1}}$+$\sqrt{2{S}_{2}}$=$\sqrt{3{S}_{3}}$C.$\sqrt{{S}_{1}}$+2$\sqrt{{S}_{2}}$=3$\sqrt{{S}_{3}}$D.$\sqrt{{S}_{1}}$+4$\sqrt{{S}_{2}}$=9$\sqrt{{S}_{3}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图,河的一侧是以O为圆形,半径为80$\sqrt{3}$米的扇形区域OCD,河的另一侧有一建筑物AB垂直于水平面,假设扇形OCD与点B处于同一水平面,记OB与$\widehat{CD}$的交点为E,若在点C,点O和点E处看到点A的仰角分别为45°,30°和60°,则∠CBO的余弦值为$\frac{4\sqrt{3}}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.若动点P到点$F({0,-\frac{1}{4}})$的距离比它到直线$y=\frac{5}{4}$的距离小1.
(1)求点P的轨迹E的方程;
(2)若直线y=mx-4与轨迹E交于A、B两点,且$|AB|=3\sqrt{6}$.求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知f(x+1)=x2-3x+2,则f(2)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列四个命题:
①命题“?x>0,x2-x≤0”的否定是“?x≤0,x2-x>0
②已知数列{an},则“an,an+1,an+2成等比数列”是“an+12=anan+2”的充要条件
③“若xy≠0,则x2+y2≠0”的逆命题
④若p∧q为假命题,则p,q均为假命题
其中假命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设F1和F2为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两个焦点,若F1,F2,P(0,-2b)是正三角形的三个顶点,则双曲线的离心率为(  )
A.$\frac{3}{2}$B.2C.$\frac{5}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{n}$=1与双曲线$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{m}$=1有相同的焦点,则动点P(n,m)的轨迹为(  )
A.椭圆的一部分B.双曲线的一部分C.抛物线的一部分D.直线的一部分

查看答案和解析>>

同步练习册答案