精英家教网 > 高中数学 > 题目详情
11.等差数列{an}中,Sn为其前n项和,若a5=10,S5=30,则$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+$\frac{1}{{S}_{3}}$+…+$\frac{1}{{S}_{2016}}$=$\frac{2016}{2017}$.

分析 设等差数列{an}的公差为d,由a5=10,S5=30,可得$\left\{\begin{array}{l}{{a}_{1}+4d=10}\\{5{a}_{1}+\frac{5×4}{2}d=30}\end{array}\right.$,解得a1,d.可得Sn,再利用“裂项求和”方法即可得出.

解答 解:设等差数列{an}的公差为d,∵a5=10,S5=30,∴$\left\{\begin{array}{l}{{a}_{1}+4d=10}\\{5{a}_{1}+\frac{5×4}{2}d=30}\end{array}\right.$,
解得a1=d=2.
∴Sn=$2n+\frac{n(n-1)}{2}×2$=n(n+1),
∴$\frac{1}{{S}_{n}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$.
则$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+$\frac{1}{{S}_{3}}$+…+$\frac{1}{{S}_{2016}}$=$(1-\frac{1}{2})$+$(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{2016}-\frac{1}{2017})$=1-$\frac{1}{2017}$=$\frac{2016}{2017}$.
故答案为:$\frac{2016}{2017}$.

点评 本题考查了等比数列与等差数列的通项公式、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.A,B,C三个学生参加了一次考试,A,B的得分均为70分,C的得分均为65分,已知命题p:若及格分低于70分,则A,B,C都没有及格,在下列四个命题中,为p的逆否命题的是(  )
A.若及格分不低于70分,则A,B,C都及格
B.若A,B,C都及格,则及格分不低于70分
C.若A,B,C至少有1人及格,则及格分不低于70分
D.若A,B,C至少有1人及格,则  及格分不高70于分

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.对于任意实数x,符号[x]表示不超过x的最大整数,例如[2]=2;[2.1]=2;[-2.2]=-3.函数y=[x]叫做“取整函数”,它在数学本身和生产实践中有广泛的应用.则[log31]+[log32]+[log33]+…+[log311]的值为12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某公司对新招聘的员工张某进行综合能力测试,共设置了A、B、C三个测试项目.假定张某通过项目A的概率为$\frac{1}{2}$,通过项目B、C的概率均为a(0<a<1),且这三个测试项目能否通过相互独立.
(1)用随机变量X表示张某在测试中通过的项目个数,求X的概率分布和数学期望E(X)(用a表示);
(2)若张某通过一个项目的概率最大,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.由y=x,y=$\frac{1}{x}$,x=2及x轴所围成的平面图形的面积是(  )
A.ln2+1B.2-ln2C.ln2-$\frac{1}{2}$D.ln2+$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.4和10的等差中项是7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(3,-4),则向量$\overrightarrow{a}$在向量$\overrightarrow{b}$上的投影为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知U是全集,A、B是U的两个子集,用交、并、补关系将图中的阴影部分表示出来B∩(∁UA)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆的长轴长为6,离心率为$\frac{1}{3}$,F2为椭圆的右焦点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)点M在圆x2+y2=8上,且M在第一象限,过M作圆x2+y2=8的切线交椭圆于P,Q两点,判断△PF2Q的周长是否为定值并说明理由.

查看答案和解析>>

同步练习册答案