精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
3
8
x2+lnx+2
,g(x)=x.
(Ⅰ)求函数F(x)=f(x)-2•g(x)的极值点;
(Ⅱ)若函数F(x)=f(x)-2•g(x)在[et,+∞)(t∈Z)上有零点,求t的最大值;
(Ⅲ)证明:当x>0时,有[1+g(x)]
1
g(x)
<e
成立;若bn=g(n)
1
g(n+1)
(n∈N*),试问数列{bn}中是否存在bn=bm(n≠m)?若存在,求出所有相等的两项;若不存在,请说明理由.(e为自然对数的底数)
分析:(Ⅰ)函数F(x)=f(x)-2•g(x),代入整理,并求导得F′(x)=
(3x-2)(x-2)
4x
,令导数等于0,得F(x)的极值点;
(Ⅱ)由(Ⅰ)知F(x)在x∈[
2
3
,+∞)
上有最小值F(2),且F(2)>0,∴F(x)在x∈[
2
3
,+∞)
上无零点;
若函数F(x)在[et,+∞)(t∈Z)上有零点,且考虑到F(x)在(0,
2
3
]
单调递增,在[
2
3
,2]
单调递减,故只须et
2
3
且F(et)≤0即可;易验证F(e-1)>0,F(e-2)<0;所以,当t≤-2且t∈Z时均有F(et)<0,此时函数F(x)在[et,e-1)(t∈Z)上有零点,且t的最大值为-2.
(Ⅲ)要证明“x>0时,不等式[1+g(x)]
1
g(x)
<e
”成立,即证“(1+x)
1
x
<e”成立,化简为ln(1+x)<x,
构造函数h(x)=ln(1+x)-x(其中x>0),则h′(x)<0,所以函数h(x)在(0,+∞)上是减函数,即x>0时,h(x)<h(0)=0,也即x>0时,ln(1+x)<x成立,即证x>0时,[1+g(x)]
1
g(x)
<e
成立; 
bn=n
1
n+1
,得
(bn+1)(n+1)(n+2)
(bn)(n+1)(n+2)
=
(n+1)n+1
nn+2
=
n+1
n2
•(1+
1
n
)n
e(n+1)
n2
3(n+1)
n2

3(n+1)
n2
<1
,得n2-3n-3>0,又n∈N*,可得n≥4;即n≥4时,有
(bn+1)(n+1)(n+2)
(bn)(n+1)(n+2)
<1

所以n≥4时,bn>bn+1,比较b1、b2、b3、b4知:b1<b2<b3<b4,由b1=1,且n≠1时bn=n
1
n+1
≠1
,所以若数列{bn}中存在相等的两项,只能是b2、b3与后面的项可能相等,由b2=2
1
3
=8
1
9
=b8
b3=3
1
4
b5=5
1
6
,所以数列{bn}中存在唯一相等的两项,是b2=b8
解答:解:(Ⅰ)由题知:F(x)=
3
8
x2+lnx+2-2x
,定义域为(0,+∞);求导,得F′(x)=
(3x-2)(x-2)
4x
,令F′(x)=0
,得x=
2
3
,或x=3;∴函数F(x)的单调递增区间为(0,
2
3
]和[2,+∞)
,F(x)的单调递减区间为[
2
3
,2]

x=
2
3
为F(x)的极大值点,x=2为F(x)的极小值点;
(Ⅱ)∵F(x)在x∈[
2
3
,+∞)
上的最小值为F(2),且F(2)=
3
8
×22-4+2+ln2=ln2-
1
2
=
ln4-1
2
>0

∴F(x)在x∈[
2
3
,+∞)
上没有零点;要使函数F(x)在[et,+∞)(t∈Z)上有零点,并考虑到F(x)在(0,
2
3
]
单调递增且在[
2
3
,2]
单调递减,故只须et
2
3
且F(et)≤0即可;
易验证F(e-1)=
3
8
e-2+1-2e-1>0,F(e-2)=
3
8
e-4+lne-2+2-2e-2=
1
e2
(
3
8
e-2-2)<0

所以,当t≤-2且t∈Z时均有F(et)<0,此时函数F(x)在[et,e-1)(t∈Z)上有零点,
即函数F(x)在[et,+∞)(t∈Z)上有零点时,t的最大值为-2.
(Ⅲ) 要证明:当x>0时,不等式[1+g(x)]
1
g(x)
<e
成立,
即证:(1+x)
1
x
<e?
1
x
ln(1+x)<1?ln(1+x)<x
成立,
构造函数h(x)=ln(1+x)-x(其中x>0),则h′(x)=
1
1+x
-1=
-x
1+x
<0

所以函数h(x)在(0,+∞)上是减函数,因而x>0时,h(x)<h(0)=0,
即:x>0时,ln(1+x)<x成立,所以当x>0时,[1+g(x)]
1
g(x)
<e
成立; 
因为bn=n
1
n+1
,所以
(bn+1)(n+1)(n+2)
(bn)(n+1)(n+2)
=
(n+1)n+1
nn+2
=
n+1
n2
•(1+
1
n
)n
e(n+1)
n2
3(n+1)
n2

3(n+1)
n2
<1
,得:n2-3n-3>0,结合n∈N*得:n≥4,
因此,当n≥4时,有
(bn+1)(n+1)(n+2)
(bn)(n+1)(n+2)
<1

所以当n≥4时,bn>bn+1,即:b4>b5>b6>…,
又通过比较b1、b2、b3、b4的大小知:b1<b2<b3<b4
因为b1=1,且n≠1时bn=n
1
n+1
≠1
,所以若数列{bn}中存在相等的两项,只能是b2、b3与后面的项可能相等,
b2=2
1
3
=8
1
9
=b8
b3=3
1
4
b5=5
1
6
,所以数列{bn}中存在唯一相等的两项,
即:b2=b8
点评:本题考查了数列与函数的综合应用,考查了利用导数研究函数的单调性和最值问题,也考查了数列与不等式的应用,是较难的题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
(3-a)x-3 (x≤7)
ax-6??? (x>7)
,数列an满足an=f(n)(n∈N*),且an是递增数列,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-ax
,若f(x)在区间(0,1]上是减函数,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3-2sin2ωx-2cos(ωx+
π
2
)cosωx(0<ω≤2)
的图象过点(
π
16
,2+
2
)

(Ⅰ)求ω的值及使f(x)取得最小值的x的集合;
(Ⅱ)该函数的图象可由函数y=
2
sin4x(x∈R)
的图象经过怎样的变换得出?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|3-
1x
|,x∈(0,+∞)

(1)写出f(x)的单调区间;
(2)是否存在实数a,b(0<a<b)使函数y=f(x)定义域值域均为[a,b],若存在,求出a,b的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x-
π
3
)=sinx,则f(π)
等于(  )

查看答案和解析>>

同步练习册答案