精英家教网 > 高中数学 > 题目详情
已知f(x)=x2-2(n+1)x+n2+5n-7,

(1)设f(x)的图象的顶点的纵坐标构成数列{an},求证:{an}为等差数列;

(2)设f(x)的图象的顶点到x轴的距离构成{bn},求{bn}的前n项和.

(1)证明:f(x)=[x-(n+1)2]+3n-8,

∴an=3n-8.∵an-1-an=3,

∴{an}为等差数列.

(2)解析:bn=|3n-8|,

当1≤n≤2时,bn=8-3n,b1=5.

Sn=

当n≥3时,bn=3n-8.

Sn=5+2+1+4+…+(3n-8)

=7+

=.

∴Sn=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=x2-(a+
1
a
)x+1

(Ⅰ)当a=
1
2
时,解不等式f(x)≤0;
(Ⅱ)若a>0,解关于x的不等式f(x)≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
x2(x>0)
e(x=0)
0(x<0)
,则f{f[f(-2)]}=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
x2,x>0
f(x+1),x≤0
则f(2)+f(-1)
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)对定义域中任意x,均满足f(x)+f(2a-x)=2b,则称函数y=f(x)的图象关于点(a,b)对称;
(1)已知f(x)=
x2-mx+1x
的图象关于点(0,1)对称,求实数m的值;
(2)已知函数g(x)在(-∞,0)∪(0,+∞)上的图象关于点(0,1)对称,且当x∈(0,+∞)时,g(x)=-2x-n(x-1),求函数g(x)在x∈(-∞,0)上的解析式;
(3)在(1)(2)的条件下,若对实数x<0及t>0,恒有g(x)+tf(t)>0,求正实数n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2,g(x)=(
1
2
)x-m
,若对任意x1∈[0,2],存在x2∈[1,2],使得f(x1)≥g(x2),则实数m的取值范围是
m
1
4
m
1
4

查看答案和解析>>

同步练习册答案