精英家教网 > 高中数学 > 题目详情

【题目】如图,在平面直角坐标系中,已知椭圆的离心率,左顶点为,过点作斜率为的直线交椭圆于点,交轴于点.

(1)求椭圆的方程;

(2)已知的中点,存在定点,使得对于任意的都有,求点的坐标;

(3)若过点作直线的平行线交椭圆于点,求的最小值.

【答案】(1)(2)(3)

【解析】

试题分析:(1)由椭圆的离心率和左顶点,求出a,b,由此能求出椭圆C的标准方程.(2)直线l的方程为y=k(x+4),与椭圆联立,得,(x+4)[(4k2+3)x+16k2-12)]=0,由此利用韦达定理、直线垂直,结合题意能求出结果.(3)OM的方程可设为y=kx,与椭圆联立得M点的横坐标为,由OMl,能求出结果

试题解析:1)因为左顶点为,所以,又,所以.…………………2

又因为

所以椭圆C的标准方程为. ………………………………4分

(2)直线的方程为,由消元得,.

化简得

所以. ………………………………6分

时,

所以.因为的中点所以的坐标为,则.……………………8分

直线的方程为,令点坐标为

假设存在定点,使得

,即恒成立,

所以恒成立,所以

因此定点的坐标为. ……………10分

(3)因为,所以的方程可设为

点的横坐标为…………………12分

,得

…………………14分

当且仅当时取等号,

所以当时,的最小值为 ………………16分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】国庆假期是实施免收小型客车高速通行费的重大节假日,有一个群名为天狼星的自驾游车队,该车队是由31辆身长约为(以计算)的同一车型组成,行程中经过一个长为2725的隧道(通过隧道的车速不超过),匀速通过该隧道,设车队的速度为根据安全和车流的需要相邻两车之间保持的距离相邻两车之间保持的距离自第一辆车车头进入隧道至第31辆车车尾离开隧道所用的时间

(1)将表示成为的函数

(2)求该车队通过隧道时间的最小值及此时车队的速度

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1在区间上画出函数的图象

2设集合试判断集合之间的关系并给出证明

3求证在区间的图象位于函数图象的上方

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆心在轴正半轴上的圆与直线相切,与轴交于两点,且.

(1)求圆的标准方程;

(2)过点的直线与圆交于不同的两点,若设点的重心,当的面积为时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班一次数学考试成绩频率分布直方图如图所示,数据分组依次为,已知成绩大于等于分的人数为人,现采用分层抽样的方式抽取一个容量为的样本.

(1)求每个分组所抽取的学生人数;

(2)从数学成绩在的样本中任取人,求恰有人成绩在的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时.若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.

(1)用每天生产的卫兵个数x与骑兵个数y表示每天的利润W(元);

(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前项和为,且,数列为等差数列,且 .

(1)求数列的通项公式;

(2)设,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面,四边形为正方形,点分别为线段上的点,

1求证:平面平面

2求证:当点不与点重合时,平面

3时,求点到直线距离的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

时,求函数的单调区间;

若函数的图象在点处的切线的倾斜角为函数当且仅当在处取得极值,其中的导函数,求取值范围

查看答案和解析>>

同步练习册答案