【题目】设数列的前项和为,且,数列为等差数列,且, .
(1)求数列和的通项公式;
(2)设,求数列的前项和.
科目:高中数学 来源: 题型:
【题目】已知抛物线:()与椭圆:相交所得的弦长为
(Ⅰ)求抛物线的标准方程;
(Ⅱ)设,是上异于原点的两个不同点,直线和的倾斜角分别为和,当,变化且为定值()时,证明:直线恒过定点,并求出该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(请选做其中一题)
(1)请推导等差数列及等比数列前项和公式;
(2)如果你在海上航行,请设计一种测量海上两个小岛之间距离的方法并作图说明;
(3)某工厂要建造一个长方形无盖贮水池,其容积为4800立方米,深为3米,如果池底每平米的造价为150元,池壁每平米造价为120元,怎样设计水池能使造价最低?最低总造价是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,过椭圆上一点向轴作垂线,垂足为左焦点,分别为的右顶点,上顶点,且,.
(1)求椭圆的方程;
(2)为上的两点,若四边形逆时针排列)的对角线所在直线的斜率为,求四边形面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】先后2次抛掷一枚骰子,将得到的点数分别记为a,b.
(1)求直线ax+by+5=0与圆x2+y2=1相切的概率;
(2)将a,b,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂家计划在2012年举行商品促销活动,经调查测算,该商品的年销售量万件与年促销费用万元满足:,其中为常数,若不搞促销活动,则该产品的年销售量只有1万件,已知2012年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家的产量等于销售量,而销售收入为生产成本的1.5倍(生产成本由固定投入和再投入两部分资金组成).
(1)将2012年该产品的利润万元表示为年促销费用万元的函数;
(2)该厂2012年的促销费用投入多少万元时,厂家的利润最大?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com