| A. | [5,6] | B. | [6,7] | C. | [6,9] | D. | [5,7] |
分析 设出A,B两点坐标,求出三个向量的坐标,对|$\overrightarrow{AP}$+$\overrightarrow{BP}$+$\overrightarrow{OP}$|取平方得出关于A点坐标的函数,利用三角函数的性质求出|$\overrightarrow{AP}$+$\overrightarrow{BP}$+$\overrightarrow{OP}$|的范围.
解答 解:设A(x,0),B(0,y),则x2+y2=1.
∴$\overrightarrow{AP}$=(1-x,$\sqrt{3}$),$\overrightarrow{BP}$=(1,$\sqrt{3}-$y).$\overrightarrow{OP}$=(1,$\sqrt{3}$).
∴$\overrightarrow{AP}$+$\overrightarrow{BP}$+$\overrightarrow{OP}$=(3-x,3$\sqrt{3}-y$).
∴|$\overrightarrow{AP}$+$\overrightarrow{BP}$+$\overrightarrow{OP}$|2=(3-x)2+(3$\sqrt{3}$-y)2=37-6x-6$\sqrt{3}$y.
令x=cosθ,y=sinθ,
则|$\overrightarrow{AP}$+$\overrightarrow{BP}$+$\overrightarrow{OP}$|2=37-6cosθ-6$\sqrt{3}$sinθ=37-12sin(θ+$\frac{π}{6}$).
∴当sin(θ+$\frac{π}{6}$)=-1时,|$\overrightarrow{AP}$+$\overrightarrow{BP}$+$\overrightarrow{OP}$|取得最大值$\sqrt{37+12}$=7,
当sin(θ+$\frac{π}{6}$)=1时,|$\overrightarrow{AP}$+$\overrightarrow{BP}$+$\overrightarrow{OP}$|取得最小值$\sqrt{37-12}$=5.
故选:D.
点评 本题考查了平面向量的坐标运算,三角函数的图象与性质,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-2]∪(-1,+∞) | B. | [-2,-1) | C. | (-∞,-1) | D. | (-2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | -1 | C. | i | D. | -i |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | p∨q是假命题 | B. | p∧(¬q)是真命题 | C. | p∧q是真命题 | D. | (¬p)∧q是真命题 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com