精英家教网 > 高中数学 > 题目详情
19.在平面直角坐标系xOy中,已知点A,B分别为x轴,y轴上一点,且|AB|=1,若P(1,$\sqrt{3}$ ),则|$\overrightarrow{AP}$+$\overrightarrow{BP}$+$\overrightarrow{OP}$|的取值范围是(  )
A.[5,6]B.[6,7]C.[6,9]D.[5,7]

分析 设出A,B两点坐标,求出三个向量的坐标,对|$\overrightarrow{AP}$+$\overrightarrow{BP}$+$\overrightarrow{OP}$|取平方得出关于A点坐标的函数,利用三角函数的性质求出|$\overrightarrow{AP}$+$\overrightarrow{BP}$+$\overrightarrow{OP}$|的范围.

解答 解:设A(x,0),B(0,y),则x2+y2=1.
∴$\overrightarrow{AP}$=(1-x,$\sqrt{3}$),$\overrightarrow{BP}$=(1,$\sqrt{3}-$y).$\overrightarrow{OP}$=(1,$\sqrt{3}$).
∴$\overrightarrow{AP}$+$\overrightarrow{BP}$+$\overrightarrow{OP}$=(3-x,3$\sqrt{3}-y$).
∴|$\overrightarrow{AP}$+$\overrightarrow{BP}$+$\overrightarrow{OP}$|2=(3-x)2+(3$\sqrt{3}$-y)2=37-6x-6$\sqrt{3}$y.
令x=cosθ,y=sinθ,
则|$\overrightarrow{AP}$+$\overrightarrow{BP}$+$\overrightarrow{OP}$|2=37-6cosθ-6$\sqrt{3}$sinθ=37-12sin(θ+$\frac{π}{6}$).
∴当sin(θ+$\frac{π}{6}$)=-1时,|$\overrightarrow{AP}$+$\overrightarrow{BP}$+$\overrightarrow{OP}$|取得最大值$\sqrt{37+12}$=7,
当sin(θ+$\frac{π}{6}$)=1时,|$\overrightarrow{AP}$+$\overrightarrow{BP}$+$\overrightarrow{OP}$|取得最小值$\sqrt{37-12}$=5.
故选:D.

点评 本题考查了平面向量的坐标运算,三角函数的图象与性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.执行如图所示的程序框图,则输出的i=9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合A={x|-2≤x<0},B={x|x<-1},则A∩B=(  )
A.(-∞,-2]∪(-1,+∞)B.[-2,-1)C.(-∞,-1)D.(-2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知x为实数,若复数z=(x2-1)+(x+1)i为纯虚数,则$\frac{x+{i}^{3}}{1+i}$的值为(  )
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),定义椭圆C的“相关圆”方程为x2+y2=$\frac{{a}^{2}{b}^{2}}{{a}^{2}+{b}^{2}}$.若抛物线y2=4x的焦点与椭圆C的一个焦点重合,且椭圆C短轴的一个端点和两个焦点构成直角三角形
(Ⅰ)求椭圆C的方程和“相关圆”E的方程;
(Ⅱ)过“相关圆”E上任意一点P的直线l:y=kx+m与椭圆交于A,B两点,O为坐标原点,若OA⊥OB,证明原点O到直线AB的距离为定值,并求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设F1,F2为椭圆的两个焦点,以F1为圆心作圆F2,已知圆F2经过椭圆的中心,且与椭圆相交于M点,若直线MF1恰与圆F2相切,则该椭圆的离心率e为$\sqrt{3}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知命题p:?a∈R,且a>0,有a+$\frac{1}{a}$≥2,命题q:?x∈R,sinx+cosx=$\sqrt{5}$,则下列判断正确的是(  )
A.p∨q是假命题B.p∧(¬q)是真命题C.p∧q是真命题D.(¬p)∧q是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某新建居民小区2005年建成200m2的绿地,为了加快绿地建设,争办绿化示范小区,计划从2006年起每年以20%的速度进行绿地建设,问到2010年时该小区的绿地总面积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在△ABC中,已知下列条件,解三角形(角度精确到0.1°,边长精确到0.1cm)
(1)a=7cm,b=10cm,c=6cm
(2)a=9.4cm,b=15.9cm,c=21.1cm.

查看答案和解析>>

同步练习册答案