【题目】共有编号分别为1,2,3,4,5的五个座位,在甲同学不坐2号座位,乙同学不坐5号座位的条件下,甲、乙两位同学的座位号相加是偶数的概率为( )
A.B.C.D.
科目:高中数学 来源: 题型:
【题目】在公差不为零的等差数列{an}中,a4=10,且a3、a6、a10成等比数列.
(1)求{an}的通项公式;
(2)设bn=,求数列{bn}的前n项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂产生的废气经过过滤后排放,在过滤过程中,污染物的数量p(单位:毫克/升)不断减少,已知p与时间t(单位:小时)满足p(t)=,其中p0为t=0时的污染物数量.又测得当t∈[0,30]时,污染物数量的变化率是-10ln 2,则p(60)=( )
A.150毫克/升B.300毫克/升
C.150ln 2毫克/升D.300ln 2毫克/升
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班随机抽查了20名学生的数学成绩,分数制成如图的茎叶图,其中A组学生每天学习数学时间不足1个小时,B组学生每天学习数学时间达到一个小时。学校规定90分及90分以上记为优秀,75分及75分以上记为达标,75分以下记为未达标.
(1)分别求出A、B两组学生的平均分、并估计全班的数学平均分;
(2)现在从成绩优秀的学生中任意抽取2人,求这两人恰好都来自B组的概率;
(3)根据成绩得到如下列联表:
①直接写出表中的值;
②判断是否有的把握认为“数学成绩达标与否”与“每天学习数学时间能否达到一小时”有关.
参考公式与临界值表:K2=.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地要建造一个边长为2(单位:)的正方形市民休闲公园,将其中的区域开挖成一个池塘,如图建立平面直角坐标系后,点的坐标为,曲线是函数图像的一部分,过边上一点在区域内作一次函数()的图像,与线段交于点(点不与点重合),且线段与曲线有且只有一个公共点,四边形为绿化风景区.
(1)求证:;
(2)设点的横坐标为,
①用表示、两点的坐标;
②将四边形的面积表示成关于的函数,并求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的最小正周期为,将的图象向右平移个单位长度得到函数的图象,有下列叫个结论:
在单调递增; 为奇函数;
的图象关于直线对称; 在的值域为.
其中正确的结论是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数,关于的方程,给出下列结论
①存在这样的实数,使得方程有3个不同的实根
②不存在这样的实数,是的方程有4个不同的实根
③存在这样的实数,是的方程有5个不同的实根
④不存在这样的实数,是的方程有6个不同的实根
其中正确的个数是( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知直线与圆O:相切.
(1)直线l过点(2,1)且截圆O所得的弦长为,求直线l的方程;
(2)已知直线y=3与圆O交于A,B两点,P是圆上异于A,B的任意一点,且直线AP,BP与y轴相交于M,N点.判断点M、N的纵坐标之积是否为定值?若是,求出该定值;若不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知是数列的前项和,对任意,都有;
(1)若,求证:数列是等差数列,并求此时数列的通项公式;
(2)若,求证:数列是等比数列,并求此时数列的通项公式;
(3)设,若,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com