【题目】某工厂产生的废气经过过滤后排放,在过滤过程中,污染物的数量p(单位:毫克/升)不断减少,已知p与时间t(单位:小时)满足p(t)=
,其中p0为t=0时的污染物数量.又测得当t∈[0,30]时,污染物数量的变化率是-10ln 2,则p(60)=( )
A.150毫克/升B.300毫克/升
C.150ln 2毫克/升D.300ln 2毫克/升
科目:高中数学 来源: 题型:
【题目】给定数列
,若满足
(
且
),对于任意的
,都有
,则称数列
为“指数型数列”.
(1)已知数列
的通项公式为
,试判断数列
是不是“指数型数列”;
(2)已知数列
满足
,
,证明数列
为等比数列,并判断数列
是否为“指数型数列”,若是给出证明,若不是说明理由;
(3)若数列
是“指数型数列”,且
,证明数列
中任意三项都不能构成等差数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于函数
有下述四个结论:
①
是偶函数;②
在区间
单调递减;
③
在
有
个零点;④
的最大值为
.
其中所有正确结论的编号是( )
A.①②④B.②④C.①④D.①③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆
的左、右两个焦点分别为
设
,若
为正三角形且周长为
.
![]()
(1)求椭圆
的标准方程;
(2)若过点
且斜率为
的直线与椭圆
相交于不同的两点
,是否存在实数
使
成立,若存在,求出
的值,若不存在,请说明理由;
(3)若过点
的直线与椭圆
相交于不同的两点
两点,
记的面积记为
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
,
.
(1)若直线
与圆
:
相切,求
被圆
:
所截得弦长取最小值时直线
的斜率;
(2)
时,
:
表示圆,问是否存在一条直线
,使得它和所有的圆
都没有公共点?如果存在,求出直线
,若不存在,说明理由;
(3)若满足不等式
和等式
的点集是一条线段,求
取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
与
满足
.
(1)若
,求数列
的通项公式;
(2)若
且数列
为公比不为1的等比数列,求q的值,使数列
也是等比数列;
(3)若
且
,数列
有最大值M与最小值
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线的中心在原点,
、
为左、右焦点,焦距是实轴长的
倍,双曲线过点
.
![]()
(1)求双曲线的标准方程;
(2)若点
在双曲线上,求证:点
在以
为直径的圆上;
(3)在(2)的条件下,若直线
交双曲线于另一点
,求
的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】共有编号分别为1,2,3,4,5的五个座位,在甲同学不坐2号座位,乙同学不坐5号座位的条件下,甲、乙两位同学的座位号相加是偶数的概率为( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的左,右焦点分别为
,且
与短轴的一个端点Q构成一个等腰直角三角形,点P(
)在椭圆
上,过点
作互相垂直且与x轴不重合的两直线AB,CD分别交椭圆
于A,B,C,D且M,N分别是弦AB,CD的中点
(1)求椭圆的方程
(2)求证:直线MN过定点R(
)
(3)求
面积的最大值
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com