【题目】给定数列
,若满足
(
且
),对于任意的
,都有
,则称数列
为“指数型数列”.
(1)已知数列
的通项公式为
,试判断数列
是不是“指数型数列”;
(2)已知数列
满足
,
,证明数列
为等比数列,并判断数列
是否为“指数型数列”,若是给出证明,若不是说明理由;
(3)若数列
是“指数型数列”,且
,证明数列
中任意三项都不能构成等差数列.
【答案】(1)是;(2)是,理由详见解析;(3)详见解析.
【解析】
(1)利用指数数列的定义,判断即可;
(2)利用a1
,an=2anan+1+3an+1(n∈N*),说明数列{
1}是等比数列,然后证明数列{
1}为“指数型数列”;
(3)利用反证法,结合n为偶数以及奇数进行证明即可.
解:(1)数列
,
,所以数列
是“指数型数列”
(2)数列
是“指数型数列”
,
所以
是等比数列,
,![]()
所以数列
是“指数型数列”
(3)若数列
是“指数型数列”,由定义得:
![]()
假设数列
中存在三项
,
,
成等差数列,不妨设![]()
则
,得:![]()
整理得:
(*)
若a为偶数时,右边为偶数,
为奇数,则左边为奇数,(*)不成立;
若a为奇数时,右边为偶数,
为奇数,则左边为奇数,(*)不成立;
所以,对任意的
,(*)式不成立.
科目:高中数学 来源: 题型:
【题目】大衍数列,来源于《乾坤谱》中对易传“大衍之数五十“的推论.主要用于解释中国传统文化中的太极衍生原理数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和是中华传统文化中隐藏着的世界数学史上第一道数列题其规律是:偶数项是序号平方再除以2,奇数项是序号平方减1再除以2,其前10项依次是0,2,4,8,12,18,24,32,40,50,…,如图所示的程序框图是为了得到大衍数列的前100项而设计的,那么在两个判断框中,可以先后填入( )
![]()
A.
是偶数?,
? B.
是奇数?,
?
C.
是偶数?,
? D.
是奇数?,
?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(Ⅰ)若
的值域为
,求
的值;
(Ⅱ)巳
,是否存在这祥的实数
,使函数
在区间
内有且只有一个零点.若存在,求出
的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(其中
为自然对数的底数).
(1)若
,求函数
在区间
上的最大值;
(2)若
,关于
的方程
有且仅有一个根, 求实数
的取值范围;
(3)若对任意
,不等式
均成立, 求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在公差不为零的等差数列{an}中,a4=10,且a3、a6、a10成等比数列.
(1)求{an}的通项公式;
(2)设bn=
,求数列{bn}的前n项和
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂产生的废气经过过滤后排放,在过滤过程中,污染物的数量p(单位:毫克/升)不断减少,已知p与时间t(单位:小时)满足p(t)=
,其中p0为t=0时的污染物数量.又测得当t∈[0,30]时,污染物数量的变化率是-10ln 2,则p(60)=( )
A.150毫克/升B.300毫克/升
C.150ln 2毫克/升D.300ln 2毫克/升
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com