【题目】如图,在四棱锥中,底面是正方形,,.
(1)证明:平面;
(2)若是的中点,是棱上一点,且平面,求二面角的余弦值.
科目:高中数学 来源: 题型:
【题目】已知位数满足下列条件:①各个数字只能从集合中选取;②若其中有数字4,则在4的前面不含2.将这样的n位数的个数记为
(1)求;
(2)探究与之间的关系,求出数列的通项公式;
(3)对于每个正整数,在与之间插入个得到一个新数列,设是数列的前项和,试探究能否成立?写出你探究得到的结论并给出证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知椭圆C:的左、右顶点为A,B,右焦点为F.过点A且斜率为k()的直线交椭圆C于另一点P.
(1)求椭圆C的离心率;
(2)若,求的值;
(3)设直线l:,延长AP交直线l于点Q,线段BQ的中点为E,求证:点B关于直线EF的对称点在直线PF上.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给定数列,若满足(且),对于任意的,都有,则称数列为“指数型数列”.
(1)已知数列的通项公式为,试判断数列是不是“指数型数列”;
(2)已知数列满足,,证明数列为等比数列,并判断数列是否为“指数型数列”,若是给出证明,若不是说明理由;
(3)若数列是“指数型数列”,且,证明数列中任意三项都不能构成等差数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,.
(1)若直线与圆:相切,求被圆:所截得弦长取最小值时直线的斜率;
(2)时,:表示圆,问是否存在一条直线,使得它和所有的圆都没有公共点?如果存在,求出直线,若不存在,说明理由;
(3)若满足不等式和等式的点集是一条线段,求取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com