精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,底面是正方形,.

(1)证明:平面

(2)若的中点,是棱上一点,且平面,求二面角的余弦值.

【答案】(1)证明见解析;(2)

【解析】

1)根据条件中的数据,可得,从而得到平面,得到,结合正方形中,得到平面;(2)以轴建立空间直角坐标系,得到平面的法向量,平面的一个法向量为,由向量的夹角公式,得到答案.

(1)证明:∵.

平面

平面

平面

又∵为正方形,

平面

平面

(2)解:如图,连接,取的中点

,连接,则

从而平面,平面的交点即为

轴建立如图所示的空间直角坐标系

平面即平面,设其法向量为

,得

易知平面的一个法向量为

.

因为二面角为锐二面角,

故所求余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论f(x)的单调性;

(2)f(x)有两个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

)求函数的单调区间;

)设,若对任意,且,都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知位数满足下列条件:各个数字只能从集合中选取;若其中有数字4,则在4的前面不含2.将这样的n位数的个数记为

1)求

2)探究之间的关系,求出数列的通项公式;

3)对于每个正整数,在之间插入得到一个新数列,设是数列的前项和,试探究能否成立?写出你探究得到的结论并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知椭圆C的左、右顶点为AB,右焦点为F.过点A且斜率为k)的直线交椭圆C于另一点P.

1)求椭圆C的离心率;

2)若,求的值;

3)设直线l:,延长AP交直线l于点Q,线段BQ的中点为E,求证:点B关于直线EF的对称点在直线PF上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定数列,若满足),对于任意的,都有,则称数列为“指数型数列”.

1)已知数列的通项公式为,试判断数列是不是“指数型数列”;

2)已知数列满足,证明数列为等比数列,并判断数列是否为“指数型数列”,若是给出证明,若不是说明理由;

3)若数列是“指数型数列”,且,证明数列中任意三项都不能构成等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合.

(1),求实数的值;

(2),求实数的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,为棱的中点,.

(1)证明:平面

(2)设二面角的正切值为,求异面直线所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

1)若直线与圆相切,求被圆所截得弦长取最小值时直线的斜率;

2时,表示圆,问是否存在一条直线,使得它和所有的圆都没有公共点?如果存在,求出直线,若不存在,说明理由;

3)若满足不等式和等式的点集是一条线段,求取值范围.

查看答案和解析>>

同步练习册答案