精英家教网 > 高中数学 > 题目详情

【题目】关于函数有下述四个结论:

是偶函数;②在区间单调递减;

个零点;④的最大值为.

其中所有正确结论的编号是(

A.①②④B.②④C.①④D.①③

【答案】A

【解析】

利用偶函数的定义可判断出命题①的正误;去绝对值,利用余弦函数的单调性可判断出命题②的正误;求出函数在区间上的零点个数,并利用偶函数的性质可判断出命题③的正误;由取最大值知,然后去绝对值,即可判断出命题④的正误.

对于命题①,函数的定义域为,且,则函数为偶函数,命题①为真命题;

对于命题②,当时,,则,此时,函数在区间上单调递减,命题②正确;

对于命题③,当时,,则

时,,则

由偶函数的性质可知,当时,,则函数上有无数个零点,命题③错误;

对于命题④,若函数取最大值时,,则

,当时,函数取最大值,命题④正确.

因此,正确的命题序号为①②④.

故选A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数).以原点为极点,轴的非负半轴为极轴建立极坐标系,直线的极坐标方程为.

(1)求的极坐标方程;

(2)若曲线的极坐标方程为,直线在第一象限的交点为,与的交点为(异于原点),求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,共享单车的出现为市民绿色出行提供了极大的方便,某共享单车公司Mobike计划在甲、乙两座城市共投资160万元,根据行业规定,每个城市至少要投资30万元,由前期市场调研可知:甲城市收益P与投入单位:万元满足,乙城市收益Q与投入单位:万元满足,设甲城市的投入为单位:万元,两个城市的总收益为单位:万元

1)写出两个城市的总收益万元关于甲城市的投入万元的函数解析式,并求出当甲城市投资72万元时公司的总收益;

2)试问如何安排甲、乙两个城市的投资,才能使总收益最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,上的点,平面.

(1)求证:平面

(2)若,且,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某观测站在目标的南偏西方向,从出发有一条南偏东走向的公路,在处测得与相距的公路处有一个人正沿着此公路向走去,走到达,此时测得距离为,若此人必须在分钟内从处到达处,则此人的最小速度为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数图象上所有点的横坐标缩短为原来的,纵坐标不变,再向右平移个单位长度,得到函数的图象,则下列说法正确的是( )

A. 函数的一条对称轴是

B. 函数的一个对称中心是

C. 函数的一条对称轴是

D. 函数的一个对称中心是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求函数fx)=exexa)﹣a2xaR)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人参加某电视台举办的答题闯关游戏,按照规则:每人从备选的10道题中一次性抽取3道题独立作答,至少答对2道题即闯关成功.已知10道备选题中,甲只能答对其中的6道题,乙答对每道题的概率都是

Ⅰ)求甲闯关成功的概率;

Ⅱ)设乙答对题目的个数为,求的分布列及数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB是圆O的直径,C是圆上的点,平面PAC⊥平面ABCPAAB.

1)求证:PA⊥平面ABC

2)若PA=AC=2,求点A到平面PBC的距离.

查看答案和解析>>

同步练习册答案