精英家教网 > 高中数学 > 题目详情

【题目】求函数fx)=exexa)﹣a2xaR)的单调区间.

【答案】见解析.

【解析】

对函数进行求导,分a0a0a0三种情况分别利用导数判断函数的单调性求其单调区间即可.

fx)=exexa+exexa22ex+)(exa).

下面对a分类讨论:a0时,fx)=e2xR上单调递增;

a0时,令fx)=0,解得xlna,可得:函数fx)在(﹣lna)上单调递减,在(lna+∞)上单调递增;

a0时,令fx)=0,解得xln(﹣),可得:函数fx)在(﹣ln(﹣))上单调递减,在(ln(﹣),+∞)上单调递增.

综上可得:a0时,fx)单调递增区间为

a0时,函数fx)的单调递减区间为(﹣lna),单调递增区间为(lna+∞);

a0时,函数fx)的单调递减区间为(﹣ln(﹣)),单调递增区间为(ln(﹣),+∞).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设全集U=R,集合A={x|1≤x<4},B={x|2a≤x<3-a}.

(1)若a=-2,求B∩A,B∩(UA);(2)A∪B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某观光海域AB段的长度为3百公里,一超级快艇在AB段航行,经过多次试验得到其每小时航行费用Q(单位:万元)与速度v(单位:百公里/小时)(0≤v≤3)的以下数据:

0

1

2

3

0

0.7

1.6

3.3

为描述该超级快艇每小时航行费用Q与速度v的关系,现有以下三种函数模型供选择:Qav3bv2cvQ=0.5vaQklogavb

(1)试从中确定最符合实际的函数模型,并求出相应的函数解析式;

(2)该超级快艇应以多大速度航行才能使AB段的航行费用最少?并求出最少航行费用.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于函数有下述四个结论:

是偶函数;②在区间单调递减;

个零点;④的最大值为.

其中所有正确结论的编号是(

A.①②④B.②④C.①④D.①③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,过的直线交椭圆两点,若的最大值为5,则b的值为( )

A. 1 B. C. D. 2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分13分)

某产品按行业生产标准分成8个等级,等级系数X依次为1,2……8,其中X≥5为标准AX≥3为标准B,已知甲厂执行标准A生产该产品,产品的零售价为6/件;乙厂执行标准B生产该产品,产品的零售价为4/件,假定甲、乙两厂得产品都符合相应的执行标准

I)已知甲厂产品的等级系数X1的概率分布列如下所示:

X1的数字期望EX1=6,求ab的值;

II)为分析乙厂产品的等级系数X2,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下:

3 5 3 3 8 5 5 6 3 4

6 3 4 7 5 3 4 8 5 3

8 3 4 3 4 4 7 5 6 7

用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数X2的数学期望.

在(I)、(II)的条件下,若以性价比为判断标准,则哪个工厂的产品更具可购买性?说明理由.

注:(1)产品的性价比”=

2性价比大的产品更具可购买性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}是等差数列,其前n项和为Sn , {bn}是等比数列,且a1=b1=2,a4+b4=27,S4﹣b4=10.

(1)求数列{an}与{bn}的通项公式;

(2)记Tn=anb1+an1b2+…+a1bn , n∈N* , 证明:Tn+12=﹣2an+10bn(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,离心率,点是椭圆上的一个动点,面积的最大值是

(1)求椭圆的方程;

(2)若是椭圆上不重合的四点,相交于点,且,求此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求函数的单调区间;

2)设,求函数在区间上的最小值;

3)某同学发现:总存在正实数,使,试问:该同学的判断是否正确?若不正确,请说明理由;若正确,请直接写出的取值范围(不需要解答过程).

查看答案和解析>>

同步练习册答案