精英家教网 > 高中数学 > 题目详情

【题目】设全集U=R,集合A={x|1≤x<4},B={x|2a≤x<3-a}.

(1)若a=-2,求B∩A,B∩(UA);(2)A∪B=A,求实数a的取值范围.

【答案】(1)BA=[1,4),B∩(UA)= [-4,1)∪[4,5);(2) .

【解析】

(1)利用补集的定义求出的补集,然后根据交集的定义求解即可直接求解即可;(2 )分类讨论是否是空集列出不等式组求解即可.

(1)∵A={x|1≤x<4},∴UA={x|x<1x≥4},

B={x|2ax<3-a},∴a=-2时,B={-4≤x<5},所以BA=[1,4),

B∩(UA)={x|-4≤x<14≤x<5}=[-4,1)∪[4,5).

(2)AB=ABA

B=时,则有2a≥3-a,∴a≥1,

B时,则有,∴,

综上所述,所求a的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数对一切实数都有成立,且.

(1)的值;

(2)的解析式,并用定义法证明单调递增;

(3)已知,设P,不等式恒成立,Q:时,是单调函数。如果满足P成立的的集合记为A,满足Q成立的集合记为B,求(R为全集)。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,抛物线C1:x2=4y,C2:x2=﹣2py(p>0),点M(x0 , y0)在抛物线C2上,过M作C1的切线,切点为A,B(M为原点O时,A,B重合于O),当x0=1﹣ 时,切线MA的斜率为﹣

(1)求P的值;
(2)当M在C2上运动时,求线段AB中点N的轨迹方程(A,B重合于O时,中点为O).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三棱锥中, 互相垂直, 是线段上一动点,若直线与平面所成角的正切的最大值是,则三棱锥的外接球的表面积是(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51.

(1)当一次订购量为多少个时,零件的实际出厂单价恰降为51?

(2)设一次订购量为个,零件的实际出厂单价为.写出函数的表达式;

(3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个,利润又是多少元?(工厂售出一个零件的利润=实际出厂单价-成本)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:,直线L:.

⑴ 求证:对,直线L与圆C总有两个交点

⑵ 求直线L与圆C截得的线段的最短长度,以及此时直线L的方程;;

⑶ 设直线L与圆C交于A、B两点若︱AB︱=,求L的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某建材商场国庆期间搞促销活动,规定:顾客购物总金额不超过800元,不享受任何折扣;如果顾客购物总金额超过800元,则超过800元部分享受一定的折扣优惠,并按下表折扣分别累计计算:

可以享受折扣优惠金额

折扣率

不超过500元的部分

超过500元的部分

若某顾客在此商场获得的折扣金额为50元,则此人购物实际所付金额为  

A.1500元B.1550元C.1750元D.1800元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正方体的棱长为1,线段上有两个动点 , 且 , 则下列结论中错误的是( )

A.
B.三棱锥的体积为定值
C.二面角的大小为定值
D.异面直线所成角为定值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方体ABCD﹣A1B1C1D1中AA1=AD=1,E为CD中点.
(Ⅰ)求证:B1E⊥AD1
(Ⅱ)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长;若不存在,说明理由.
(Ⅲ)若二面角A﹣B1E﹣A1的大小为30°,求AB的长.

查看答案和解析>>

同步练习册答案