精英家教网 > 高中数学 > 题目详情

【题目】已知函数对一切实数都有成立,且.

(1)的值;

(2)的解析式,并用定义法证明单调递增;

(3)已知,设P,不等式恒成立,Q:时,是单调函数。如果满足P成立的的集合记为A,满足Q成立的集合记为B,求(R为全集)。

【答案】(1)(2),证明见解析(3)

【解析】

1,由条件,结合f1)=0,即可得到f0);

2)令y0,结合f0),即可求出fx)的解析式,利用定义证明函数的单调性;

3)化简不等式fx+32x+a,得到x2x+1a,求出左边的范围,由恒成立得到a的范围;由二次函数的单调性,即可得到集合B,从而求出ARB

解:(1)令则有,又

2)令

任取

,则单调递增。

3)由P成立得时,

是单调函数,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了解高中生作文成绩与课外阅读量之间的关系,某研究机构随机抽取60名高中生做问卷调查,得到以下数据:

作文成绩优秀

作文成绩一般

总计

课外阅读量较大

22

10

32

课外阅读量一般

8

20

28

总计

30

30

60

由以上数据,计算得到的观测值,根据临界值表,以下说法正确的是(  )

P(K2k0)

0.50

0.40

0.25

0.15

0.10

0.05

0.05

0.010

0.005

k0

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

A. 在样本数据中没有发现足够证据支持结论“作文成绩优秀与课外阅读量大有关”

B. 在犯错误的概率不超过0.001的前提下,认为作文成绩优秀与课外阅读量大有关

C. 在犯错误的概率不超过0.05的前提下,认为作文成绩优秀与课外阅读量大有关

D. 在犯错误的概率不超过0.005的前提下,认为作文成绩优秀与课外阅读量大有关

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=eax﹣x,其中a≠0.
(1)若对一切x∈R,f(x)≥1恒成立,求a的取值集合.
(2)在函数f(x)的图象上取定两点A(x1 , f(x1)),B(x2 , f(x2)(x1<x2),记直线AB的斜率为K,问:是否存在x0∈(x1 , x2),使f′(x0)>k成立?若存在,求x0的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数上是增函数,则的取值范围是(  )

A. B. C. D.

【答案】C

【解析】

若函数f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函数,则x2﹣ax+3a>0且f(2)0,根据二次函数的单调性,我们可得到关于a的不等式,解不等式即可得到a的取值范围.

若函数f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函数,

则当x∈[2,+∞)时,

x2﹣ax+3a>0且函数f(x)=x2﹣ax+3a为增函数

,f(2)=4+a>0

解得﹣4<a≤4

故选:C.

【点睛】

本题考查的知识点是复合函数的单调性,二次函数的性质,对数函数的单调区间,其中根据复合函数的单调性,构造关于a的不等式,是解答本题的关键.

型】单选题
束】
10

【题目】圆锥的高和底面半径之比,且圆锥的体积,则圆锥的表面积为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}共有5项,其中a1=0,a5=2,且|ai+1﹣ai|=1,i=1,2,3,4,则满足条件的不同数列的个数为(  )
A.3
B.4
C.5
D.6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·新课标1卷)已知椭圆E的中心为坐标原点,离心率为E的右焦点与抛物线C:y2=8x的焦点重合,A,B是C的准线与E的两个交点,则|AB|= ( )
A.3
B.6
C.9
D.12

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图为某旅游区各景点的分布图,图中一条带箭头的线段表示一段有方向的路,试计算顺着箭头方向,从A到H不同的旅游路线的条数,这个数是(  )

A. 15 B. 16 C. 17 D. 18

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市出租车的计价标准是:4km以内(含4km10元,超过4km且不超过18km的部分1.2/km,超过18km的部分1.8/km,不计等待时间的费用.

1)如果某人乘车行驶了10km,他要付多少车费?

2)试建立车费y(元)与行车里程xkm)的函数关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设全集U=R,集合A={x|1≤x<4},B={x|2a≤x<3-a}.

(1)若a=-2,求B∩A,B∩(UA);(2)A∪B=A,求实数a的取值范围.

查看答案和解析>>

同步练习册答案