精英家教网 > 高中数学 > 题目详情

【题目】已知f(x)=xlnx,g(x)=x3+ax2﹣x+2
(1)求函数f(x)的单调区间;
(2)求函数f(x)在[t,t+2](t>0)上的最小值;
(3)对一切的x,2f(x)≤g′(x)+2恒成立,求实数a的取值范围.

【答案】
(1)解:f′(x)=lnx+1令f′(x)<0解得0<x<

∴f(x)的单调递减区间为(0,

令f′(x)>0解得x>

∴f(x)的单调递增区间为( ,+∞)


(2)解:当0<t<t+2< 时,t无解

当0<t≤ <t+2,即0<t≤ 时,

∴f(x)min=f( )=﹣

<t<t+2,即t> 时,f(x)在[t,t+2]上单调递增,

∴f(x)min=f(t)=tlnt

∴f(x)min=


(3)解:由题意:2xlnx≤3x2+2ax﹣1+2即2xlnx≤3x2+2ax+1

∵x∈(0,+∞)

∴a≥lnx﹣ x﹣

设h(x)=lnx﹣ x﹣

则h′(x)= + =﹣

令h′(x)=0,得x=1,x=﹣ (舍)

当0<x<1时,h′(x)>0;当x>1时,h′(x)<0

∴当x=1时,h(x)取得最大值,h(x)max=﹣2

∴a≥﹣2

故实数a的取值范围[﹣2,+∞)


【解析】(1)求出f′(x),令f′(x)小于0求出x的范围即为函数的减区间,令f′(x)大于0求出x的范围即为函数的增区间;(2)当0<t<t+2< 时t无解,当0<t≤ <t+2即0<t≤ 时,根据函数的增减性得到f(x)的最小值为f( ),当 <t<t+2即t> 时,函数为增函数,得到f(x)的最小值为f(t);(3)求出g′(x),把f(x)和g′(x)代入2f(x)≤g′(x)+2中,根据x大于0解出a≥lnx﹣ x﹣ ,然后令h(x)=lnx﹣ x﹣ ,求出h(x)的最大值,a大于等于h(x)的最大值,方法是先求出h′(x)=0时x的值,利用函数的定义域和x的值分区间讨论导函数的正负得到函数的单调区间,根据函数的增减性即可得到函数的最大值,即可求出a的取值范围.
【考点精析】利用利用导数研究函数的单调性和函数的最大(小)值与导数对题目进行判断即可得到答案,需要熟知一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知p:x2﹣2x﹣8≤0,q:x2+mx﹣6m2≤0,m>0.
(1)若q是p的必要不充分条件,求m的取值范围;
(2)若p是q的充分不必要条件,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】厂为了对新研发的一种产品进行合理定价将该产品按事先拟定的价格进行试销得到如下数据

单价x/

8

8.2

8.4

8.6

8.8

9

销量y/

90

84

83

80

75

68

(1)求线性回归方程=x+其中=-20 =- .

(2)预计在今后的销售中销量与单价仍然服从(1)中的关系且该产品的成本是4/为使工厂获得最大利润该产品的单价应定为多少元?(利润=销售收入-成本)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,平面平面 为等边三角形, 分别为的中点.

(1)求证: 平面.

(2)求证:平面平面.

(3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知p:﹣x2+4x+12≥0,q:x2﹣2x+1﹣m2≤0(m>0).
(Ⅰ)若p是q充分不必要条件,求实数m的取值范围;
(Ⅱ)若“¬p”是“¬q”的充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=px﹣ ﹣2lnx.
(Ⅰ)若p=2,求曲线f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若函数f(x)在其定义域内为增函数,求正实数p的取值范围;
(Ⅲ)设函数g(x)= (e为自然对数底数),若在[1,e]上至少存在一点x0 , 使得f(x0)>g(x0)成立,求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,且圆心在直线上.

Ⅰ)求此圆的方程

(Ⅱ)求与直线垂直且与圆相切的直线方程.

(Ⅲ)若点为圆上任意点,求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线及点.

1)证明直线过某定点,并求该定点的坐标;

(2)当点到直线的距离最大时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一个袋中装有大小相同的4个红球,3个白球,3个黄球.若任意取出2个球,则取出的2个球颜色相同的概率是;若有放回地任意取10次,每次取出一个球,每取到一个红球得2分,取到其它球不得分,则得分数X的方差为

查看答案和解析>>

同步练习册答案