精英家教网 > 高中数学 > 题目详情
13.已知a>0,函数f(x)=$\frac{1}{3}{a^2}{x^3}-a{x^2}+\frac{2}{3}$,g(x)=-ax+1,若在区间$(0,\frac{1}{2}]$上至少存在一个实数x0,使f(x0)>g(x0)成立,则a的取值范围是(  )
A.$(-3+\sqrt{17},+∞)$B.$(3+\sqrt{17},+∞)$C.$(-3+\sqrt{17},3+\sqrt{17})$D.$(0,-3+\sqrt{17})$

分析 设F(x)=f(x)-g(x),求出导函数,由x的范围得到导函数值大雨0,即F(x)为增函数,根据闭区间x的范围,求出F(x)的最大值,根据最大值大于0列出关于a的不等式,求出不等式的解集即可得到a的取值范围.

解答 解:设F(x)=f(x)-g(x)=$\frac{1}{3}$a2x3-ax2+ax-$\frac{1}{3}$(x∈(0,$\frac{1}{2}$]),
对F(x)求导,得F′(x)=a2x2-2ax+a=a2x2+a(1-2x)>0(a>0),
∴F(x)在(0,$\frac{1}{2}$]上为增函数,则F(x)max=F($\frac{1}{2}$),
依题意,只需F(x)max>0,即$\frac{1}{3}$a2×$\frac{1}{8}$-a×$\frac{1}{4}$+a×$\frac{1}{2}$-$\frac{1}{3}$>0,
∴a2+6a-8>0,解得a>-3+$\sqrt{17}$或a<-3-$\sqrt{17}$(舍去),
于是,所求实数a的取值范围是(-3+$\sqrt{17}$,+∞),
故选:A.

点评 本题考查利用导函数的正负判断函数的单调性,会利用导数求闭区间上函数的最大值,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知函数(1)f(x)=3lnx;(2)f(x)=3x2+1;(3)f(x)=3ex;(4)$f(x)=\frac{3}{x}$.其中满足对于任意x1∈D(其中D为函数的定义域),相应地存在唯一的x2∈D,使$\sqrt{f({x_1})f({x_2})}=3$的函数的序号为(3)、(4).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设集合A={x|1<x<3,x∈R},B={x||x-a|<4,x∈R},若x∈A是x∈B的充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数$f(x)=2cosxsin({x+\frac{π}{3}})-\sqrt{3}{sin^2}x+sinxcosx$.
(1)求函数f(x)的最小正周期T;
(2)在给出的直角坐标系中,画出函数f(x)在$[{-\frac{π}{2},\frac{π}{2}}]$上的图象;
(3)若当$x∈[{\frac{π}{12},\frac{7π}{12}}]$时,f(x)的反函数为f-1(x),求f-1(1)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.若f(x)=x2-2x-3,x∈[-2,5].
(1)求f(x)的单调区间;
(2)求f(x)的最大值与最小值;
(3)若m+f(x)≤0恒成立,求m取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设复数z=$\frac{1}{1-i}+{i^7}$,则|z|=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知抛物线的参数方程为$\left\{\begin{array}{l}x=8{t^2}\\ y=8t\end{array}\right.$(t为参数),则该抛物线的焦点坐标为(  )
A.(2,0)B.(-2,0)C.(0,2)D.(0,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.椭圆3x2+4y2=6的离心率为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知幂函数$f(x)={x^{2{m^2}-m-3}}({m∈Z})$为奇函数,且在区间(0,+∞)上是减函数,则f(x)=(  )
A.y=x3B.y=xC.y=x-3D.y=x-2

查看答案和解析>>

同步练习册答案