精英家教网 > 高中数学 > 题目详情
4.设集合A={x|1<x<3,x∈R},B={x||x-a|<4,x∈R},若x∈A是x∈B的充分条件,求实数a的取值范围.

分析 根据充分条件的定义转化为两个集合的关系,建立不等式关系进行求解即可.

解答 解:B={x||x-a|<4,x∈R}=B={x|-4<x-a<4}={x|a-4<x<a+4},
若x∈A是x∈B的充分条件,则A⊆B,
则$\left\{\begin{array}{l}{a+4≥3}\\{a-4≤1}\end{array}\right.$,即$\left\{\begin{array}{l}{a≥-1}\\{a≤5}\end{array}\right.$,
得-1≤a≤5,
即实数a的取值范围是[-1,5].

点评 本题主要考查充分条件和必要条件的应用,根据充分条件和必要条件的定义转化为两个集合的关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=a2-x-8(实数a>0,a≠1).
(1)判断函数f(x)的奇偶性并证明;
(2)若x∈[1,+∞),求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.定义在R上的偶函数f(x)和奇函数g(x)满足f(x)+g(x)=2-x+x,则g(2)=$\frac{1}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设α:x≤-5,β:2m-3≤x≤2m+1,若α是β的必要条件,则实数m的取值范围是(-∞,-3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知集合A={x|x2-9≥0},B={x||x-4|<2},C={x|$\frac{x-8}{x+2}$<0}.
(1)求A∩B、A∪C;
(2)若全集U=R,求∁UA∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.我国是世界上严重缺水的国家之一,城市缺水问题较为突出.某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量的标准,为了确定一个较为合理的标准,必须先了解全市居民日常用水量的分布情况.现采用抽样调查的方式,获得了n位居民某年的月均用水量(单位:),样本统计结果如图表:
分组频数频率
[0,1)a
[1,2)0.19
[2,3)50b
[3,4)0.23
[4,5)0.18
[5,6)5
(I)分别求出n,a,b的值;
(II)若从样本中月均用水量在[5,6](单位:)的5位居民中任选2人作进一步的调查研究,求月均用水量最多的居民被选中的概率(5位居民的月均用水量均不相等).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(Ι)已知:复数z1满足(z1-2)(1+i)=1-i(i为虚数单位),复数z2的虚部为2,z1•z2是实数,求z2
(Ⅱ)已知:双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一条渐近线方程是y=$\sqrt{3}x$,它的一个焦点在抛物线y2=24x的准线上,求双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知a>0,函数f(x)=$\frac{1}{3}{a^2}{x^3}-a{x^2}+\frac{2}{3}$,g(x)=-ax+1,若在区间$(0,\frac{1}{2}]$上至少存在一个实数x0,使f(x0)>g(x0)成立,则a的取值范围是(  )
A.$(-3+\sqrt{17},+∞)$B.$(3+\sqrt{17},+∞)$C.$(-3+\sqrt{17},3+\sqrt{17})$D.$(0,-3+\sqrt{17})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设a∈R,则“a=1”是“直线l1:ax+2y-1=0与直线l2:x+(a+1)y+4=0平行”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案