解:( I)由|f(x)|≤|2x
2+4x-6|=2|(x+3)(x-1)|得f(-3)=0,f(1)=0,
故a=2,b=-3,∴f(x)=x
2+2x-3
(II)由2a
n=f(a
n-1)+3=a
n-12+2a
n-1=a
n-1(a
n-1+2)(n≥2)得

,
∴

∴

=

∵2a
n=a
n-12+2a
n-1(n≥2),∴2a
n-2a
n-1=a
n-12≥0(n≥2),
∴a
n≥a
n-1(n≥2),从而a
n≥a
n-1≥≥a
2≥a
1=3>0,即a
n+1>0,∴

(III)由2a
n=a
n-12+2a
n-1(n≥2)得(a
n-1+1)
2=2a
n+1<2(a
n+1)(n≥2),
设a
n+1=c
n,则c
1=4,且2c
n>c
n-12(n≥2),
于是1+log
2c
n>2log
2c
n-1(n≥2),
设d
n=log
2c
n,则d
1=2,且1+d
n>2d
n-1(n≥2),∴d
n-1>2(d
n-1-1)(n≥2),
∴d
n-1>2
2(d
n-2-1)>>2
n-1(d
1-1)=2
n-1(n≥2),
从而n≥2时,

当n=1时,

,∴

分析:( I)由|f(x)|≤|2x
2+4x-6|=2|(x+3)(x-1)|知a=2,b=-3,由此可知f(x)=x
2+2x-3(2分)
(II)由2a
n=f(a
n-1)+3=a
n-12+2a
n-1=a
n-1(a
n-1+2)(n≥2)知

故

=

由此可知

(III)由2a
n=a
n-12+2a
n-1(n≥2)知(a
n-1+1)
2=2a
n+1<2(a
n+1)(n≥2),设a
n+1=c
n,可求出1+log
2c
n>2log
2c
n-1,设d
n=log
2c
n,可求出d
n-1>2
2(d
n-2-1)>>2
n-1(d
1-1)=2
n-1(n≥2),由此可知

点评:本题考查数列的综合运用,难度较大,解题时要认真审题,仔细解答.