精英家教网 > 高中数学 > 题目详情
15.设函数f(x)=$\frac{1}{3}$x3+mx2+1的导函数f′(x),且f′(1)=3.
(1)求函数f(x)在点(1,f(1))处的切线方程;
(2)求函数f(x)的单调区间和极值.

分析 (1)求出f′(x)=x2+2mx,利用f′(1)=3.求出m,求出切线斜率,切点坐标,得到切线方程.
(2)利用导函数的符号,求解函数f(x)的单调递增区间,递减区间即可.

解答 解:(1)f′(x)=x2+2mx,f′(1)=3,
∴f′(x)=1+2m=3,∴m=1.
∴f(x)=$\frac{1}{3}$x3+x2+1,∴f(1)=$\frac{7}{3}$.
∴切线方程为y-$\frac{7}{3}$=3(x-1),
即3x-3y+4=0.
(2)f′(x)=x2+2x=x(x+2),
令f′(x)>0,得x>0或x<-2,
令f′(x)<0,得-2<x<0,
∴函数f(x)的单调递增区间为(-∞,-2),(0,+∞),递减区间为(-2,0).

点评 本题考查函数的导数的应用,切线方程以及函数的单调区间的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.复平面上三点A、B、C分别对应复数1,2i,5+2i,则由A,B,C为顶点所构成的三角形是(  )
A.锐角三角形B.等腰三角形C.钝角三角形D.直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知圆C:x2+y2-2x+4y-4=0,
(1)求直线2x-y+1=0截圆C所得的弦长.
(2)是否存在斜率为1的直线l,使以l被圆C所截得的弦AB为直径的圆经过原点?若存在,写出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某三棱锥的三视图如图所示,且三个三角形均为直角三角形,则三棱锥的体积为(  )
A.32B.$32\sqrt{7}$C.$16\sqrt{7}$D.$64\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.某情报站有A,B,C,D四种互不相同的密码,每周使用其中的一种密码,且每周都是从上周未使用的三种密码中等可能地随机选用一种.设第1周使用A种密码,那么第7周也使用A种密码的概率是$\frac{61}{243}$.(用最简分数表示)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如图所示,在△ABC中,AD=DB,点F在线段CD上,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,$\overrightarrow{AF}$=x$\overrightarrow{a}$+y$\overrightarrow{b}$,则$\frac{1}{x}$+$\frac{4}{y+1}$的最小值为3+2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数y=ksin(kx+φ)(|φ|<$\frac{π}{2}$)与函数y=kx-k2+6的部分图象如图所示,则φ=-$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.一个盒子中共有12个大小相同的小球,其中红球9个,黄球3个,从盒子中任取3个球,将其中的红球染成黄色连同黄球一起放回,此时盒子中黄球的个数为ξ,则Eξ=(  )
A.1B.$\frac{21}{4}$C.$\frac{17}{4}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)的定义域为(0,+∞),f(2)=1,f(xy)=f(x)+f(y)且当x>1时,f(x)>0.
(1)判断函数f(x)在其定义域(0,+∞)上的单调性并证明;
(2)解不等式f(x)+f(x-2)≤3.

查看答案和解析>>

同步练习册答案