精英家教网 > 高中数学 > 题目详情

(07年辽宁卷理)(12分)

已知函数

(I)证明:当时,上是增函数;

(II)对于给定的闭区间,试说明存在实数,当时,在闭区间上是减函数;

(III)证明:

本小题主要考察二次函数,利用导数研究函数的单调性和极值,函数的最大值和最小值等知识,考查综合运用数学知识解决问题的能力。

解析:(I)证明:由题设得。又由,且,即。由此可知,上是增函数。

(II)因为为减函数的充分条件,所以只要找到实数k,使得t>k时,即在闭区间上成立即可。因为在闭区间上连续,故在闭区间上有最大值,设其为k,于是在t>k时,在闭区间上恒成立,

在闭区间上为减函数。    

(III)设,即

易得

,则,易知。当时,;当时,。故当时,取最小值,。所以

于是对任意的,都有,即

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(07年辽宁卷理)已知是定义在上的连续函数,如果仅当时的函数值为0,且,那么下列情形不可能出现的是(    )

A.0是的极大值,也是的极大值

B.0是的极小值,也是的极小值

C.0是的极大值,但不是的极值

D.0是的极小值,但不是的极值

查看答案和解析>>

科目:高中数学 来源: 题型:

(07年辽宁卷理)已知函数在点处连续,则       

查看答案和解析>>

科目:高中数学 来源: 题型:

(07年辽宁卷理)(12分)

已知函数(其中

(I)求函数的值域;

(II)若对任意的,函数的图象与直线有且仅有两个不同的交点,试确定的值(不必证明),并求函数的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(07年辽宁卷理)(12分)

已知数列与函数满足条件:

.

(I)若存在,求的取值范围;

(II)若函数上的增函数,,证明对任意(用表示).

查看答案和解析>>

同步练习册答案