精英家教网 > 高中数学 > 题目详情
设F1、F2分别为双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦点,双曲线上存在一点P使得|PF1|+|PF2|=3b,|PF1|•|PF2|=
9
4
ab,则该双曲线的离心率为
 
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:由双曲线的定义可得,||PF1|-|PF2||=2a,两边平方,再由条件,即可得到a,b的关系,再由双曲线的a,b,c的关系式,结合离心率公式,即可求得.
解答: 解:由双曲线的定义可得,
||PF1|-|PF2||=2a,
由|PF1|+|PF2|=3b,|PF1|•|PF2|=
9
4
ab,
则有(|PF1|+|PF2|)2-4|PF1|•|PF2|=9b2-9ab=4a2
即有(3b-4a)(3b+a)=0,
即有3b=4a,即9b2=16a2=9(c2-a2),
则9c2=25a2,即有3c=5a,则e=
c
a
=
5
3

故答案为:
5
3
点评:本题考查双曲线的定义和性质:离心率,考查运算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设曲线y=x3-2x-2在P处的切线平行于直线x-y+3=0,则点P的坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,曲线y=x2-4x+3与坐标轴的交点都在圆C上.
(Ⅰ)求圆C的方程;
(Ⅱ)若圆C与直线x+y+m=0交于A,B两点,且
OA
OB
,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

根据如图的框图回答后面的问题.
(1)当输入的x值为1时,输出的值为y值多大?要使输出的y值为10,输入的x值应该为多少?
(2)若视x为自变量,y为函数值,试写出函数y=f(x)的解析式;
(3)输入的x值和输出的y值可能相等吗?若能,x的输入值为多少?若不能,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(2x+
π
6
)-1.
(1)若点P(1,-
3
)在角α的终边上,求f(
α
2
-
π
12
)的值;
(2)若x∈[-
π
6
π
3
],求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线y2=4x上一点P到直线x=-1的距离与到点Q(2,2)的距离之差的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}满足an+2an=2an+1(n∈N*),且a1=1,a2=2,则数列{an}的前2014项的乘积为(  )
A、22012
B、22013
C、22014
D、22015

查看答案和解析>>

科目:高中数学 来源: 题型:

设a1=2,a2=4,数列{bn}满足:bn=an+1-an,bn+1=2bn+2,
(1)求证:数列{bn+2}是等比数列(要指出首项与公比);
(2)求数列{an}的通项公式;
(3)求数列{nbn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数f(x)=-x2+2x-3在区间[2a-1,2]上的最小值的最大值.

查看答案和解析>>

同步练习册答案