精英家教网 > 高中数学 > 题目详情
1.在(1,+∞)上的函数f(x)满足:①f(2x)=cf(x)(c为正常数);②当2≤x≤4时,f(x)=1-(x-3)2.若f(x)图象上所有极大值对应的点均落在同一条直线上.则c=(  )
A.1或$\frac{1}{2}$B.$\frac{1}{2}或2$C.1或3D.1或2

分析 由已知中定义在[1,+∞)上的函数f(x)满足:①f(2x)=cf(x)(c为正常数);②当2≤x≤4时,f(x)=1-(x-3)2.我们可得分段函数f(x)的解析式,进而求出三个函数的极值点坐标,进而根据三点共线,则任取两点确定的直线斜率相等,可以构造关于c的方程,解方程可得答案.

解答 解:∵当2≤x≤4时,f(x)=1-(x-3)2
当1≤x<2时,2≤2x<4,
则f(x)=$\frac{1}{c}$f(2x)=$\frac{1}{c}$[1-(2x-3)2],
此时当x=$\frac{3}{2}$时,函数取极大值$\frac{1}{c}$;
当2≤x≤4时,f(x)=1-(x-3)2
此时当x=3时,函数取极大值1;
当4<x≤8时,2<$\frac{x}{2}$≤4,
则f(x)=cf($\frac{x}{2}$)=c[1-($\frac{x}{2}$-3)2],
此时当x=6时,函数取极大值c.
∵函数的所有极大值点均落在同一条直线上,
即点($\frac{3}{2}$,$\frac{1}{c}$),(3,1),(6,c)共线,
∴$\frac{1-\frac{1}{c}}{\frac{3}{2}}$=$\frac{c-1}{3}$,
解得c=1或2.
故选:D.

点评 本题考查的知识点是三点共线,函数的极值,其中根据已知分析出分段函数f(x)的解析式,进而求出三个函数的极值点坐标,是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.如图,已知直线AB为圆O的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.证明:DB=DC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=|x-1|-1,且关于x方程f2(x)+af(x)-2=0有且只有三个实数根,则实数a的值为(  )
A.1B.-1C.0D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ex(sinx+cosx)+a,g(x)=(a2-a+10)ex(a∈R且a为常数).
(Ⅰ)若曲线y=f(x)在(0,f(0))处的切线过点(1,2),求实数a的值;
(Ⅱ)若存在实数x1,x2∈[0,π],使得g(x2)<f(x1)+13-e${\;}^{\frac{π}{2}}$成立,求实数a的取值范围;
(Ⅲ)判断函数φ(x)=$\frac{{b(1+{e^2})g(x)}}{{({a^2}-a+10){e^2}x}}\;-\frac{1}{x}$+1+lnx(b>1)在(0,+∞)上的零点个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设a、b、c是三个互不相等的正整数,且abc=210,若a+b+c的最大值为M,最小值为m,则M-m=90.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在平面直角坐标系xOy中,圆C的参数方程为$\left\{\begin{array}{l}{x=a+cosθ}\\{y=sinθ}\end{array}\right.$时,(θ为参数).以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,直线l的极坐标方程为ρsin(θ-$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$.若直线l与圆C相切,则实数a的取值个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知:函数f(x)=ln(1+x)-x+ax2(a∈R).
(Ⅰ)求f(x)在点(0,f(0)处的切线方程;
(Ⅱ)当a∈(-∞,$\frac{1}{2}$)时,求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.为了解甲、乙两校高三年级学生某次期末联考地理成绩情况,从这两学校中分别随机抽取30名高三年级的地理成绩(百分制)作为样本,样本数据的茎叶图如图所示:

(Ⅰ)若乙校高三年级每位学生被抽取的概率为0.15,求乙校高三年级学生总人数;
(Ⅱ)根据茎叶图,分析甲、乙两校高三年级学生在这次联考中地理成绩;
(Ⅲ)从样本中甲、乙两校高三年级学生地理成绩不及格(低于60分为不及格)的学生中随机抽取2人,求至少抽到一名乙校学生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求下列函数的最大值与最小值
(1)f(x)=lnx+ln(2-x),x∈[$\frac{1}{2}$,1];
(2)f(x)=x3-3x2+2,x∈[-1,3].

查看答案和解析>>

同步练习册答案