【题目】由于往届高三年级数学学科的学习方式大都是“刷题一讲题一再刷题”的模式,效果不理想,某市一中的数学课堂教改采用了“记题型一刷题一检测效果”的模式,并记录了某学生的记题型时间
(单位:
)与检测效果
的数据如下表所示.
记题型时间 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
检测效果 | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)据统计表明,
与
之间具有线性相关关系,请用相关系数
加以说明(若
,则认为
与
有很强的线性相关关系,否则认为没有很强的线性相关关系);
(2)建立
关于
的回归方程,并预测该学生记题型的检测效果;
(3)在该学生检测效果不低于3.6的数据中任取2个,求检测效果均高于4.4的概率.
参考公式:回归直线
中斜率和截距的最小二乘估计分别为
,
,相关系数![]()
参考数据:
,
,
,
.
科目:高中数学 来源: 题型:
【题目】定义在R上的函数f(x)满足:如果对任意的x1,x2∈R,都有f(
)
,则称函数f(x)是R上的凹函数,已知二次函数f(x)=ax2+x(a∈R,a≠0)
(1)当a=1,x∈[﹣2,2]时,求函数f(x)的值域;
(2)当a=1时,试判断函数f(x)是否为凹函数,并说明理由;
(3)如果函数f(x)对任意的x∈[0,1]时,都有|f(x)|≤1,试求实数a的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
是定义在
上的偶函数,当
时,
.
(1)直接写出函数
的增区间(不需要证明);
(2)求出函数
,
的解析式;
(3)若函数
,
,求函数
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆
的右顶点为A,上顶点为B.已知椭圆的离心率为
,
.
(1)求椭圆的方程;
(2)设直线
与椭圆交于
,
两点,
与直线
交于点M,且点P,M均在第四象限.若
的面积是
面积的2倍,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数
的定义域为
,若存在闭区间![]()
,使得
函数满足:(1)
在
上是单调函数;(2)
在
上的值域是
,则称区间
是函数
的“和谐区间”,下列结论错误的是( )
A.函数
存在“和谐区间”
B.函数
不存在“和谐区间”
C.函数![]()
存在“和谐区间”
D.函数
(
,
)不存在“和谐区间”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
,(其中
,
为自然对数的底数,
……).
(1)令
,若
对任意的
恒成立,求实数
的值;
(2)在(1)的条件下,设
为整数,且对于任意正整数
,
,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂生产某产品的年固定成本为250万元,每生产
千件,需另投入成本
(万元),若年产量不足
千件,
的图像是如图的抛物线,此时
的解集为
,且
的最小值是
,若年产量不小于
千件,
,每千件商品售价为50万元,通过市场分析,该厂生产的商品能全部售完;
(1)写出年利润
(万元)关于年产量
(千件)的函数解析式;
(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,直线
的参数方程是
(
为参数).以原点
为极点,
轴的正半轴为极轴,建立极坐标系,圆
以极坐标系中的点
为圆心,
为半径.
(1)求圆
的极坐标方程;
(2)判断直线
与圆
之间的位置关系.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com