精英家教网 > 高中数学 > 题目详情
已知抛物线y2=2x的焦点是F,点P是抛物线上的动点,又有点A(3,2).
则|PA|+|PF|的最小值是       ,取最小值时P点的坐标           

试题分析:作PM⊥准线l,M为垂足,由抛物线的定义可得|PA|+|PF|=|PA|+|PM|,故当P,A,M三点共线时,|PA|+|PM|最小为|AM|,此时,P点的纵坐标为2,代入抛物线的方程可求得P点的横坐标为1,从而得到P点的坐标.解:由题意可得F(,0)准线方程为 x=-,作PM⊥准线l,M为垂足,由抛物线的定义可得|PA|+|PF|=|PA|+|PM|,故当P,A,M三点共线时,|PA|+|PM|最小为|AM|=3-(-)=,此时,P点的纵坐标为2,代入抛物线的方程可求得P点的横坐标为2,故P点的坐标为(2,2),
故答案为:,(2,2).
点评:本题考查椭圆的定义、标准方程,以及简单性质的应用,判断当P,A,M三点共线时,|PA|+|PM|最小为|AM|,是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知点是抛物线的准线与双曲线的两条渐近线所围成的三角形平面区域内(含边界)的任意一点,则的最大值为_    __.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,设抛物线)的准线与轴交于,焦点为;以为焦点,离心率的椭圆与抛物线轴上方的一个交点为.

(1)当时,求椭圆的方程;
(2)在(1)的条件下,直线经过椭圆的右焦点,与抛物线交于,如果以线段为直径作圆,试判断点与圆的位置关系,并说明理由;
(3)是否存在实数,使得的边长是连续的自然数,若存在,求出这样的实数;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆方程,点,A,P为椭圆上任意一点,则的取值范围是              

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知为双曲线的左准线与x轴的交点,点,若满足的点在双曲线上,则该双曲线的离心率为    .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知椭圆左、右焦点分别为F1、F2,点,点F2在线段PF1的中垂线上。
(1)求椭圆C的方程;
(2)设直线与椭圆C交于M、N两点,直线F2M与F2N的倾斜角互补,求证:直线过定点,并求该定点的坐标。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,焦点到相应准线的距离为
(1)求椭圆C的方程
(2)设直线与椭圆C交于A、B两点,坐标原点到直线的距离为,求面积的最大值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线-=1的右焦点为,则该双曲线的离心率等于(   )
   B.    C.   D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若点P在曲线C1上,点Q在曲线C2:(x-2)2y2=1上,点O为坐标原点,则的最大值是       

查看答案和解析>>

同步练习册答案