精英家教网 > 高中数学 > 题目详情

给出下列命题:
①函数y=f(x-2)与函数y=f(2-x)的图象关于x=2对称;
②函数y=f(x)导函数为y=f′(x),若f′(x0)=0,则f(x0)必为函数y=f(x)的极值;
③函数y=sinx在一象限单调递增;
④y=tanx在其定义域内为单调增函数.
其中正确的命题序号为________.


分析:对于①根据函数y=f(a+x)与函数y=f(b-x)的图象关于直线x=对称.得函数y=f(x+2)的图象与函数y=f(2-x)的图象关于直线x=2对称,从而进行判断.
②结合极值的定义可知,除了要求f′(x0)=0外,还的要求在两侧有单调性的改变(或导函数有正负变化),通过反例可知②不成立.
③y=sinx在第一象限有增有减.
④由正切函数的单调性可得④不正确.
解答:①因为函数y=f(a+x)与函数y=f(b-x)的图象关于直线x=对称
所以函数y=f(x+2)的图象与函数y=f(2-x)的图象关于直线x==2对称.①正确;
对于②,如f(x)=x3,f′(x)=3x2,f′(x)|x=0=0,但x=0不是函数的极值点.
所以f′(x0)=0是x0为函数y=f(x)的极值点的必要不充分条件,故②不正确;
③y=sinx在第一象限有增有减,故③是假命题.
④由函数y=tanx的图象可得,它在每一个开区间(-),k∈Z上都是增函数,但在它的定义域内不是增函数,故④不正确.
故答案为:①.
点评:本题考查命题的真假判断,是基础题.解题时要认真审题,仔细解答,注意函数性质的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列命题:
①函数f(x)=4cos(2x+
π
3
)
的一条对称轴是直线x=-
12

②已知函数f(x)=min{sinx,cosx},则f(x)的值域为[-1,
2
2
]

③若α,β均为第一象限角,且α>β,则sinα>sinβ.
其中真命题的个数为(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
(3a-1)x-2  x<1
logax         x≥1
,现给出下列命题:
①函数f(x)的图象可以是一条连续不断的曲线;
②能找到一个非零实数a,使得函数f (x)在R上是增函数;
③a>1时函数y=f (|x|) 有最小值-2.
其中正确的命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域为D,若存在非零实数l使得对于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),则称f(x)为M上的“l高调函数”.现给出下列命题:
①函数f(x)=2x为R上的“1高调函数”;
②函数f(x)=sin2x为R上的“A高调函数”;
③如果定义域为[-1,+∞)的函数f(x)=x2为[-1,+∞)上“m高调函数”,那么实数m的取值范围是[2,+∞);
其中正确的命题是
①②③
①②③
.(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①函数y=sin|x|不是周期函数;        ②函数y=tanx在定义域内是增函数;
③函数y=|cos2x+
1
2
|
的周期是
π
2
;    ④函数y=sin(x+
2
)
是偶函数.
其中正确的命题的序号是
①④
①④

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①函数y=cos(
2
3
x+
π
2
)
是奇函数;②函数y=sinx+cosx的最大值为
3
2

③函数y=tanx在第一象限内是增函数;
④函数y=sin(2x+
π
2
)
的图象关于直线x=
π
12
成轴对称图形.
其中正确的命题序号是

查看答案和解析>>

同步练习册答案