精英家教网 > 高中数学 > 题目详情
15.若函数f(x)=ax(a>0,且a≠1)在[1,2]上的最大值比最小值大$\frac{a}{4}$,求a的值.

分析 讨论指数函数y=ax(a>0且a≠1)的单调性,从而确定函数的最值,从而求a.

解答 解:由题意可得:
∵当a>1时,函数f(x)在区间[1,2]上单调递增,
∴f(2)-f(1)=a2-a=$\frac{1}{4}$a,解得a=0(舍去),或a=$\frac{5}{4}$.
∵当 0<a<1时,函数f(x)在区间[1,2]上单调递减,
∴f(1)-f(2)=a-a2=$\frac{1}{4}a$,解得a=0(舍去),或a=$\frac{3}{4}$.
故a的值为$\frac{3}{4}$或$\frac{5}{4}$.

点评 本题主要考查指数函数的单调性的应用,体现了分类讨论的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.设f(x)=x+tanA•tanB-1,其中A,B是△ABC的内角.
(1)若[f(1)-1]cosA•cosB=$\frac{1}{2}$,且A=$\frac{π}{4}$,a=$\sqrt{2}$.求c的长;
(2)若函数f(x)在(0,1)内有零点,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知随机事件A的概率P(A)=0.5,事件B的概率P(B)=0.6,条件概率 P(B|A)=0.8,则P(A∪B)=0.7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在等差数列{an}中,若a6+a14=2,则a10=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.(1)函数f(x)=loga(2x-1)-1的图象过定点(1,0);
(2)已知函数f(x)是定义在R上的偶函数,当x≤0时,f(x)=x(x+1),则f(x)的解析式为f(x)=x2-|x|;
(3)若loga$\frac{1}{2}$>1,则a的取值范围是($\frac{1}{2}$,1);
(4)若2-x-2y>lnx-ln(-y)(x>0,y<0),则x+y<0.
其中所有正确命题的序号是(2)(3)(4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合A={3,4,5},B={1,3,6},则集合A∪B是(  )
A.{1,3,4,5,6}B.{3}C.{3,4,5,6}D.{1,2,3,4,5,6}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数y=f(x)满足下列条件:①f(x+y)=f(x)f(y); ②x>0,f(x)>1;③x∈R,f(x)>0.
(I)求f(0)的值;
(II)证明:y=f(x)在R上是增函数;
(III)若f(2)=2,解不等式$\frac{f(x+1)}{f(1-x)}$>4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设△ABC的内角A、B、C所对的边长分别为a、b、c,已知$tanB=\frac{3}{4}$,bsinC=6.
(Ⅰ)求边长c的值;
(Ⅱ)若△ABC的面积S=24,求△ABC的周长l.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.计算:
(1)${3}^{{log}_{3}2}$-2(log34)(log827)-$\frac{1}{3}$log68+2log${\;}_{\frac{1}{6}}$ $\sqrt{3}$;
(2)0.0081${\;}^{\frac{1}{4}}$-($\frac{27}{8}$)${\;}^{-\frac{2}{3}}$+$\sqrt{3}$•$\root{3}{\frac{3}{2}}$•$\root{6}{12}$.

查看答案和解析>>

同步练习册答案