精英家教网 > 高中数学 > 题目详情
5.设f(x)=x+tanA•tanB-1,其中A,B是△ABC的内角.
(1)若[f(1)-1]cosA•cosB=$\frac{1}{2}$,且A=$\frac{π}{4}$,a=$\sqrt{2}$.求c的长;
(2)若函数f(x)在(0,1)内有零点,试判断△ABC的形状.

分析 (1)利用条件,确定A=B=$\frac{π}{4}$,C=$\frac{π}{2}$,即可求c的长;
(2)若函数f(x)在(0,1)内有零点,可得f(0(f(1)<0,A+B=$\frac{π}{2}$,即可判断△ABC的形状.

解答 解:(1)∵f(x)=x+tanA•tanB-1,[f(1)-1]cosA•cosB=$\frac{1}{2}$,
∴sinA•sinB=$\frac{1}{2}$,
∵A=$\frac{π}{4}$,
∴B=$\frac{π}{4}$,
∴C=$\frac{π}{2}$,
∵a=$\sqrt{2}$,
∴c=2;
(2)∵函数f(x)在(0,1)内有零点,
∴f(0(f(1)<0,
∴(tanA•tanB-1)•tanA•tanB=0,
∴tanA•tanB-1=0,
∴cos(A+B)=0,
∴A+B=$\frac{π}{2}$,
∴△ABC是直角三角形.

点评 本题考查三角函数的化简,考查函数的零点,考查三角形形状的判断,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知a、b为实数,集合M={b,1},N={a,0},f:x→x表示把M中的元素x映射到集合N中仍为x,则a+b等于(  )
A.-1B.2C.1D.1或2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知f(x)是定义在[-4,+∞)上的增函数,对?x∈R,总有f(cosx-b2)≥f(sin2x-b-3)恒成立,求实数b的取值范围[$\frac{1}{2}$-$\sqrt{2}$,$\frac{1}{2}$+$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设f:A→B是从集合A到集合B的映射,其中A=B={(x,y)|x∈R,y∈R},f(x,y)→(x+y,x-y).那么A中元素(1,3)的象是(4,-2);B中元素(1,3)的原象是(2,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.2015年我国将加快阶梯水价的推行,原则是“保基本、建机制、促节约”,其中“保基本是指保证至少80%的居民用户用水价格不变,为响应国家政策,制定合理的阶梯用水价格,某城市采用简单随机抽样的方法分别从郊区和城区抽取5户和20户居民的年人均用水量进行调研,抽取的数据的茎叶图如图(单位:吨).
(1)从郊区的这5户居民中随机抽取2户,求其年人均用水量都不超过30吨的概率;
(2)设该城市郊区与城区的居民户数比为1:5,现将年人均用水量不超过30吨的用户定为第一阶梯用户,并保证这一梯次的居民用户用水价格保持不变,试根据样本估计总体的思想,分析此方案是否符合国家“保基本”政策.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若向量$\overrightarrow{a}$=(3,4),且存在实数x,y.且使得$\overrightarrow{a}$=x$\overrightarrow{{e}_{1}}$$+y\overrightarrow{{e}_{2}}$,则$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$可以是 (  )
A.$\overrightarrow{{e}_{1}}$=(0,0),$\overrightarrow{{e}_{2}}$=(-1,2)B.$\overrightarrow{{e}_{1}}$=(-1,3),$\overrightarrow{{e}_{2}}$=(2,-6)
C.$\overrightarrow{{e}_{1}}$=(-1.2),$\overrightarrow{{e}_{2}}$=(3,-1)D.$\overrightarrow{{e}_{1}}$=(-$\frac{1}{2}$,1),$\overrightarrow{{e}_{2}}$=(1,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知非零向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$•$\overrightarrow{b}$=0,且,|$\overrightarrow{a}$-$\overrightarrow{b}$|=2|$\overrightarrow{a}$|,则向量$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{b}$的夹角为$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.全集U={1,2,3,5,6,8},集合A={ 1,2,5,8 },B={2},则集合(∁UA)∪B=(  )
A.{2,3,6}B.{ 0,3,6}C.{2,1,5,8}D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.若函数f(x)=ax(a>0,且a≠1)在[1,2]上的最大值比最小值大$\frac{a}{4}$,求a的值.

查看答案和解析>>

同步练习册答案