分析 根据已知构造合适的函数,对函数求导,根据函数的单调性,求出函数的取值范围,并根据偶函数的性质的对称性,求出x<0的取值范围.
解答 解:当x>0时,由2f(x)+xf′(x)-2<0可知:两边同乘以x得:
2xf(x)+x2f′(x)-2x<0,
设:g(x)=x2f(x)-x2,
则g′(x)=2xf(x)+x2f′(x)-2x<0,恒成立:
∴g(x)在(0,+∞)单调递减,
由x2f(x)-f(1)<x2-1
∴x2f(x)-x2<f(1)-1
即g(x)<g(1)
即x>1;
当x<0时,函数是偶函数,同理得:x<-1
综上可知:实数x的取值范围为(-∞,-1)∪(1,+∞),
故答案为:x<-1或x>1.
点评 主要根据已知构造合适的函数,函数求导,并应用导数法判断函数的单调性,偶函数的性质,难度中档.
科目:高中数学 来源:2016-2017学年河北省高二文上第一次月考数学试卷(解析版) 题型:选择题
一个样本容量为10的样本数据,它们组成一个公差不为O的等差数列{
},若a3 =8,且a1,a3,a7成等比数列,则此样本的平均数和中位数分别是( )
A.13,12 B.13,13 C.12,13 D.13,14
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | -$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com