精英家教网 > 高中数学 > 题目详情
15.已知向量$\overrightarrow a$,$\overrightarrow b$满足|${\overrightarrow a}$|=1,$\overrightarrow a$与$\overrightarrow b$的夹角θ为30°,则$\overrightarrow a$在$\overrightarrow b$上的投影为$\frac{\sqrt{3}}{2}$.

分析 根据投影的定义即可求出

解答 解:根据数量积的几何意义可知,$\overrightarrow a$在$\overrightarrow b$上的投影为|$\overrightarrow{a}$|与向量$\overrightarrow{a}$,$\overrightarrow{b}$夹角的余弦值的乘积,
∴$\overrightarrow a$在$\overrightarrow b$上的投影为|$\overrightarrow{a}$|•cos30°=1×$\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{2}$,
故答案为:$\frac{{\sqrt{3}}}{2}$

点评 本题考查向量投影的定义,熟练记准投影的定义是解决问题的关键,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源:2016-2017学年河南省新乡市高二上学期入学考数学卷(解析版) 题型:填空题

已知为单位向量,当之间的夹角为时,方向上的投影为

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.$\underset{lim}{n→∞}$(1+$\frac{1}{2n}$)n的值为$\sqrt{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.定义在R上的偶函数f(x)的导函数为f′(x),若对任意的示数x,都有2f(x)+xf′(x)<2恒成立,则使x2f(x)-f(1)<x2-1成立的x的取值范围为x<-1或x>1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知$\overrightarrow a=(2,1),\overrightarrow b=(0,-1)$,则$2\overrightarrow b+3\overrightarrow a$=(  )
A.(-6,1)B.(6,-1)C.(6,1)D.(-6,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数$f(x)=asin(2x-\frac{π}{3})+b,(a>0)$的最大值为1,最小值为-5;
(Ⅰ)求a,b的值
(Ⅱ)求$g(x)=bcos(ax+\frac{π}{6})$的最大值及x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数y=sinx的一个递减区间是(  )
A.(0,π)B.$[{\frac{π}{2},\frac{3π}{2}}]$C.$[{-\frac{π}{2},\frac{π}{2}}]$D.(π,2π)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知α的终边过点(a,-2),若$tan(π+α)=\frac{1}{3}$,则a=-6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知两个等差数列{an}和{bn}的前n项和分别为An和Bn,且$\frac{A_n}{B_n}=\frac{7n+57}{n+3}$,则使得$\frac{a_n}{b_n}$为整数的正整数n的个数是(  )
A.3B.4C.5D.6

查看答案和解析>>

同步练习册答案