精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率为 是椭圆上任意一点,且点到椭圆的一个焦点的最大距离等于

(Ⅰ)求椭圆的方程;

(Ⅱ)若过点的直线与椭圆相交于不同两点,设为椭圆上一点,是否存在整数,使得(其中为坐标原点)?若存在,试求整数的所有取值;若不存在,请说明理由.

【答案】(Ⅰ);(Ⅱ)整数的所有取值为-1,0,1.

【解析】试题分析:(Ⅰ)由,解得,则椭圆方程可求;
(Ⅱ)设出直线方程,和椭圆联立后化为关于的一元二次方程,由判别式大于求出的范围,利用根与系数关系得到两点的横坐标的和与积,代入后得到点的坐标,把点坐标代入椭圆方程后得到的关系,由的范围确定的范围.

试题解析:(Ⅰ)设椭圆的半焦距为,则由题意知

,解得

所以椭圆的方程为

(Ⅱ)结论:存在整数,使得.理由如下:

由题意知直线的斜率存在.

由方程组,消去整理得

∵直线与椭圆有两个不同的公共点,

,解得

∵点在椭圆上,∴

,即,解得

∴整数的所有取值为-1,0,1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数/ (为常数)的图像与轴交于点,曲线在点处的切线斜率为 .

(1)求的值及函数的极值;

(2)证明:当时, ;

(3)证明:对任意给定的正数,总存在,使得当,恒有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2015812日天津发生危化品重大爆炸事故,造成重大人员和经济损失.某港口组织消防人员对该港口的公司的集装箱进行安全抽检,已知消防安全等级共分为四个等级(一级为优,二级为良,三级为中等,四级为差),该港口消防安全等级的统计结果如下表所示:

现从该港口随机抽取了家公司,其中消防安全等级为三级的恰有20家.

)求的值;

)按消防安全等级利用分层抽样的方法从这家公司中抽取10家,除去消防安全等级为一级和四级的公司后,再从剩余公司中任意抽取2家,求抽取的这2家公司的消防安全等级都是二级的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂生产某种产品的月固定成本为10(万元),每生产件,需另投入成本为(万元).当月产量不足30件时, (万元);当月产量不低于30件时, (万元).因设备问题,该厂月生产量不超过50件.现已知此商品每件售价为5万元,且该厂每个月生产的商品都能当月全部销售完.

(1)写出月利润(万元)关于月产量(件)的函数解析式;

(2)当月产量为多少件时,该厂所获月利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别是abc已知ccosB+(b-2acosC=0

(1)求角C的大小

(2)若c=2,a+b=ab,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:

赔付金额()

0

1 000

2 000

3 000

4 000

车辆数()

500

130

100

150

120

(1)若每辆车的投保金额均为2800,估计赔付金额大于投保金额的概率.

(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为做好2022年北京冬季奥运会的宣传工作,组委会计划从某大学选取若干大学生志愿者,某记者在该大学随机调查了1000名大学生,以了解他们是否愿意做志愿者工作,得到的数据如表所示:

愿意做志愿者工作

不愿意做志愿者工作

合计

男大学生

610

女大学生

90

合计

800

(1) 根据题意完成表格;

(2) 是否有的把握认为愿意做志愿者工作与性别有关?

参考公式及数据: ,其中.

0.25

0.15

0.10

0.05

0.025

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某智能手机制作完成之后还需要依次通过三道严格的审核程序,已知第一道审核、第二道审核、第三道审核通过的概率分别为 ,每道程序是相互独立的,且一旦审核不通过就停止审核,每部手机只有三道程序都通过才能出厂销售.

(1)求审核过程中只进行两道程序就停止审核的概率;

(2)现有3部该智能手机进入审核,记这3部手机可以出厂销售的部数为,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设椭圆 ,长轴的右端点与抛物线 的焦点重合,且椭圆的离心率是

(Ⅰ)求椭圆的标准方程;

(Ⅱ)过作直线交抛物线 两点,过且与直线垂直的直线交椭圆于另一点,求面积的最小值,以及取到最小值时直线的方程.

查看答案和解析>>

同步练习册答案