【题目】已知命题函数是上的奇函数,命题函数的定义域和值域都是,其中.
(1)若命题为真命题,求实数的值;
(2)若“且”为假命题,“或”为真命题,求实数的取值范围.
【答案】(1);(2).
【解析】分析:(1)根据奇函数定义得f(-x)+f(x)=0,解得实数的值;(2)根据函数单调性得转化为对应一元二次方程有两个大于1的不相等实根,利用实根分布解得k的取值范围,由“p且q”为假命题,“p或q”为真命题,得命题p和q中有且仅有一个为真命题,根据真假列方程组解得实数的取值范围.
详解:(1)若命题p为真命题,则f(-x)+f(x)=0,
即,
化简得对任意的x∈R成立,
所以k=1.
(2)若命题q为真命题,因为在[a,b]上恒成立,
所以g(x)在[a,b]上是单调增函数,
又g(x)的定义域和值域都是[a,b],所以
所以a,b是方程的两个不相等的实根,且1<a<b.
即方程有两个大于1的实根且不相等,
记h(x)=k2x2-k(2k-1)x+1,
故,解得,
所以k的取值范围为.
因为“p且q”为假命题,“p或q”为真命题,
所以命题p和q中有且仅有一个为真命题,
即p真q假,或p假q真.
所以或
所以实数k的取值范围为.
科目:高中数学 来源: 题型:
【题目】将圆的一组等分点分别涂上红色或蓝色,从任意一点开始,按逆时针方向依次记录个点的颜色,称为该圆的一个“阶色序”,当且仅当两个“阶色序”对应位置上的颜色至少有一个不相同时,称为不同的“阶色序”.若某圆的任意两个“阶色序”均不相同,则称该圆为“阶魅力圆”.“4阶魅力圆”中最多可有的等分点个数为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面上,将两个半圆弧和、两条直线和围成的封闭图形记为,如图中阴影部分.记绕轴旋转一周而成的几何体为,过作的水平截面,所得截面面积为,试利用祖暅原理(祖暅原理:“幂势既同,则积不容异”,意思是:两等高的几何体在同高处被截得的两个截面面积均相等,那么这两个几何体的体积相等)、一个平放的圆柱和一个长方体,得出的体积值为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}前n项和Sn满足:2Sn+an=1.
(1)求数列{an}的通项公式;
(2)设 ,数列{bn}的前n项和为Tn , 求证:Tn<2.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设F1 , F2为双曲线C: 的左,右焦点,P,Q为双曲线C右支上的两点,若 =2 ,且 =0,则该双曲线的离心率是( )
A.
B.2
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如果数列,,,(,且),满足:①,;
②,那么称数列为“”数列.
()已知数列,,,;数列,,,,.试判断数列,是否为“”数列.
()是否存在一个等差数列是“”数列?请证明你的结论.
()如果数列是“”数列,求证:数列中必定存在若干项之和为.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com