【题目】已知数列{an}前n项和Sn满足:2Sn+an=1.
(1)求数列{an}的通项公式;
(2)设 ,数列{bn}的前n项和为Tn , 求证:Tn<2.
【答案】
(1)解:2Sn+an=1,2Sn+1+an+1=1,
∴2an+1+an+1=an,
∴3an+1=an,
又2S1+a1=1,
∴a1= ,
∴{an}是以 为首项,以 为公比的等比数列,
∴an=( )n
(2)解:证明: = = =2( ﹣ )
∴Tn=2[(1﹣ )+( ﹣ )+…+( ﹣ )]=2(1﹣ )<2
【解析】(1)根据数列的递推公式和对数的运算性质即可求出数列{an}的通项公式,(2)利用裂项求和即可求出数列{bn}的前n项和Tn , 再放缩证明即可.
【考点精析】本题主要考查了数列的前n项和和数列的通项公式的相关知识点,需要掌握数列{an}的前n项和sn与通项an的关系;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】已知函数 ( ),若函数F(x)=f(x)﹣3的所有零点依次记为x1 , x2 , x3 , …,xn , 且x1<x2<x3<…<xn , 则x1+2x2+2x3+…+2xn﹣1+xn= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax2﹣x﹣lnx,a∈R.
(1)当 时,求函数f(x)的最小值;
(2)若﹣1≤a≤0,证明:函数f(x)有且只有一个零点;
(3)若函数f(x)有两个零点,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题函数是上的奇函数,命题函数的定义域和值域都是,其中.
(1)若命题为真命题,求实数的值;
(2)若“且”为假命题,“或”为真命题,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的首项为1,且,数列满足,,对任意,都有.
(1)求数列、的通项公式;
(2)令,数列的前项和为.若对任意的,不等式恒成立,试求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知长方形ABCD中,AB=2 ,AD= ,M为DC的中点,将△ADM沿AM折起,使得平面ADM⊥平面ABCM (Ⅰ)求证:AD⊥BM
(Ⅱ)若点E是线段DB上的一动点,问点E在何位置时,二面角E﹣AM﹣D的余弦值为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= ,方程f2(x)+mf(x)=0(m∈R)有四个不相等的实数根,则实数m的取值范围是( )
A.(﹣∞,﹣ )
B.(﹣ ,0)
C.(﹣ ,+∞)
D.(0, )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场举行有奖促销活动,顾客购买一定金额的商品后即可参加一次抽奖.随着抽奖活动的有效开展,参与抽奖活动的人数越来越多,该商场对前5天抽奖活动的人数进行统计,y表示第x天参加抽奖活动的人数,得到统计表如下:
x | 1 | 2 | 3 | 4 | 5 |
y | 50 | 60 | 70 | 80 | 100 |
经过进一步统计分析,发现y与x具有线性相关关系.
(1)若从这5天随机抽取两天,求至少有1天参加抽奖人数超过70的概率;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程,并估计该活动持续7天,共有多少名顾客参加抽奖?
参考公式及数据:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=alnx+ x2﹣ax(a为常数)有两个极值点.
(1)求实数a的取值范围;
(2)设f(x)的两个极值点分别为x1 , x2 , 若不等式f(x1)+f(x2)<λ(x1+x2)恒成立,求λ的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com