精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)= ,方程f2(x)+mf(x)=0(m∈R)有四个不相等的实数根,则实数m的取值范围是(
A.(﹣∞,﹣
B.(﹣ ,0)
C.(﹣ ,+∞)
D.(0,

【答案】B
【解析】解:当x<0时,f(x)=﹣xex , 则f′(x)=﹣(x+1)ex
由f′(x)=0得x=﹣1,
当x<﹣1时,f′(x)>0,
当﹣1<x<0时,f′(x)<0,
即当x=﹣1时,函数f(x)取得极大值,此时f(﹣1)=
且当x<0时,f(x)>0,
当x≥0时,f(x)=ln(x+1)≥0,
设t=f(x),
则当t= 时,方程t=f(x)有两个根,
当t> 或t=0时,方程t=f(x)有1个根,
当0<t< 时,方程t=f(x)有3个根,
当t<0时,方程t=f(x)有0个根,
则方程f2(x)+mf(x)=0(m∈R)等价为t2+mt=0,
即t=0或t=﹣m,
当t=0时,方程t=f(x)有1个根,
∴若方程f2(x)+mf(x)=0(m∈R)有四个不相等的实数根,
则等价为t=f(x)有3个根,
即0<﹣m< ,得﹣ <m<0,
故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C: ,圆Q:x2+y2﹣4x﹣2y+3=0的圆心Q在椭圆C上,点P(0,1)到椭圆C的右焦点的距离为2.
(1)求椭圆C的方程;
(2)过点P作直线l交椭圆C于A,B两点,若SAQB=tan∠AQB,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面上,将两个半圆弧、两条直线围成的封闭图形记为,如图中阴影部分.记轴旋转一周而成的几何体为,过的水平截面,所得截面面积为,试利用祖暅原理(祖暅原理:“幂势既同,则积不容异”,意思是:两等高的几何体在同高处被截得的两个截面面积均相等,那么这两个几何体的体积相等)、一个平放的圆柱和一个长方体,得出的体积值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}前n项和Sn满足:2Sn+an=1.
(1)求数列{an}的通项公式;
(2)设 ,数列{bn}的前n项和为Tn , 求证:Tn<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)当a=1时,求函数f(x)在x=e﹣1处的切线方程;
(2)当 时,讨论函数f(x)的单调性;
(3)若x>0,求函数 的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设F1 , F2为双曲线C: 的左,右焦点,P,Q为双曲线C右支上的两点,若 =2 ,且 =0,则该双曲线的离心率是(
A.
B.2
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究“晚上喝绿茶与失眠”有无关系,调查了100名人士,得到下面的列联表:

失眠

不失眠

合计

晚上喝绿茶

16

40

56

晚上不喝绿茶

5

39

44

合计

21

79

100

由已知数据可以求得:,则根据下面临界值表:

0.050

0.010

0.001

3.841

6.635

10.828

可以做出的结论是( )

A. 在犯错误的概率不超过0.01的前提下认为“晚上喝绿茶与失眠有关”

B. 在犯错误的概率不超过0.01的前提下认为“晚上喝绿茶与失眠无关”

C. 在犯错误的概率不超过0.05的前提下认为“晚上喝绿茶与失眠有关”

D. 在犯错误的概率不超过0.05的前提下认为“晚上喝绿茶与失眠无关”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】自2016年1月1日起,我国全面二孩政策正式实施,这次人口与生育政策的历史性调整,使得“要不要再生一个”“生二孩能休多久产假”等成为千千万万个家庭在生育决策上避不开的话题.为了解针对产假的不同安排方案形成的生育意愿,某调查机构随机抽取了200户有生育二胎能力的适龄家庭进行问卷调查,得到如下数据:

产假安排(单位:周)

14

15

16

17

18

有生育意愿家庭数

4

8

16

20

26


(1)若用表中数据所得的频率代替概率,面对产假为14周与16周,估计某家庭有生育意愿的概率分别为多少?
(2)假设从5种不同安排方案中,随机抽取2种不同安排分别作为备选方案,然后由单位根据单位情况自主选择. ①求两种安排方案休假周数和不低于32周的概率;
②如果用ξ表示两种方案休假周数和.求随机变量ξ的分布及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,设命题:函数上单调递减,命题:对任意实数,不等式恒成立.

(1)写出命题的否定,并求非为真时,实数的取值范围;

(2)如果命题“”为真命题,且“”为假命题,求实数的取值范围.

查看答案和解析>>

同步练习册答案