精英家教网 > 高中数学 > 题目详情

【题目】某部门在同一上班高峰时段对甲、乙两地铁站各随机抽取了50名乘客,统计其乘车等待时间(指乘客从进站口到乘上车的时间,乘车等待时间不超过40分钟).将统计数据按分组,制成频率分布直方图:

假设乘客乘车等待时间相互独立.

(1)在上班高峰时段,从甲站的乘客中随机抽取1人,记为;从乙站的乘客中随机抽取1人,记为.用频率估计概率,求“乘客,乘车等待时间都小于20分钟”的概率;

(2)从上班高峰时段,从乙站乘车的乘客中随机抽取3人,表示乘车等待时间小于20分钟的人数,用频率估计概率,求随机变量的分布列与数学期望.

【答案】(Ⅰ);()详见解析.

【解析】

I)根据频率分布直方图分别计算出两个乘客等待时间小于分钟的频率,按照相互独立事件概率计算公式,计算出“乘客,乘车等待时间都小于20分钟”的概率.(II)根据二项分布概率计算公式以及数学期望计算公式,求得的分布列和数学期望.

解:(Ⅰ)设表示事件“乘客乘车等待时间小于20分钟”,表示事件“乘客乘车等待时间小于20分钟”,表示事件“乘客乘车等待时间都小于20分钟”.

由题意知,乘客乘车等待时间小于20分钟的频率为

,故的估计值为

乘客乘车等待时间小于20分钟的频率为

,故的估计值为

.

故事件的概率为

)由(Ⅰ)可知,乙站乘客乘车等待时间小于20分钟的频率为

所以乙站乘客乘车等待时间小于20分钟的概率为.

显然,的可能取值为.

所以

.

故随机变量的分布列为

0

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在六面体中,平面平面平面..

1)求证:平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)若有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面直角坐标系中两个定点,如果对于常数,在函数的图像上有且只有6个不同的点,使得成立,那么的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有关命题的说法错误的是(

A.pq为假命题,则pq均为假命题

B.x1”x23x+20”的充分不必要条件

C.命题x23x+20,则x1”的逆否命题为:x≠1,则x23x+2≠0”

D.对于命题px≥02x3,则¬Px02x≠3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在无穷数列中,是给定的正整数,

(Ⅰ)若,写出的值;

(Ⅱ)证明:数列中存在值为的项;

(Ⅲ)证明:若互质,则数列中必有无穷多项为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,平面平面.四边形为正方形,四边形为梯形,且

(1)求证:

(2)求直线与平面所成角的正弦值;

(3)线段上是否存在点,使得直线平面若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现要完成下列3项抽样调查:①从20罐奶粉中抽取4罐进行食品安全卫生检查;②从某社区100户高收入家庭,270户中等收入家庭,80户低收入家庭中选出45户进行消费水平调查;③某中学报告厅有28排,每排有35个座位,一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请28名听众进行座谈.较为合理的抽样方法是(

A.①系统抽样;②简单随机抽样;③分层抽样

B.①简单随机抽样;②分层抽样;③系统抽样

C.①分层抽样;②系统抽样;③简单随机抽样

D.①简单随机抽样;②系统抽样;③分层抽样

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知奇函数是定义在R上的单调函数,若函数恰有个零点,则的取值范围是( )

A. B. C. D.

查看答案和解析>>

同步练习册答案