分析 (1)由正弦定理和三角形的内角和定理,即可求出C的值;
(2)利用△ABC的面积公式与余弦定理,即可求出a、b的值.
解答 解:(1)△ABC中,(2b-a)cosC=ccosA,
∴(2sinB-sinA)cosC=sinCcosA,
2sinBcosC=sinCcosA+sinAcosC,
2sinBcosC=sin(A+C),
又A+B+C=π,
∴2sinBcosC=sinB,
∴cosC=$\frac{1}{2}$,
又∵0<C<π,
∴C=$\frac{π}{3}$;
(2)∵c=2,C=$\frac{π}{3}$,
∴△ABC的面积为
S△ABC=$\frac{1}{2}$absinC=$\frac{1}{2}$absin$\frac{π}{3}$=$\sqrt{3}$,
∴ab=4;①
又c2=a2+b2-2ab=22,②
由①、②组成方程组,解得a=2,b=2.
点评 本题考查了正弦定理、余弦定理与三角形的内角和定理的应用问题,是基础题目.
科目:高中数学 来源: 题型:解答题
| 区间界限 | [122,126) | [126,130) | [130,134) | [134,138) | [138,142) | [142,146) |
| 人数 | 5 | 8 | 10 | 22 | 33 | 20 |
| 区间界限 | [146,150) | [150,154) | [154,158) | |||
| 人数 | 11 | 6 | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com