精英家教网 > 高中数学 > 题目详情
7.在△ABC中,角A,B,C的对边分别为a,b,c,满足(2b-a)cosC=ccosA.
(1)求角C的大小;
(2)若c=2,且△ABC的面积为$\sqrt{3}$,求a,b的值.

分析 (1)由正弦定理和三角形的内角和定理,即可求出C的值;
(2)利用△ABC的面积公式与余弦定理,即可求出a、b的值.

解答 解:(1)△ABC中,(2b-a)cosC=ccosA,
∴(2sinB-sinA)cosC=sinCcosA,
2sinBcosC=sinCcosA+sinAcosC,
2sinBcosC=sin(A+C),
又A+B+C=π,
∴2sinBcosC=sinB,
∴cosC=$\frac{1}{2}$,
又∵0<C<π,
∴C=$\frac{π}{3}$;
(2)∵c=2,C=$\frac{π}{3}$,
∴△ABC的面积为
S△ABC=$\frac{1}{2}$absinC=$\frac{1}{2}$absin$\frac{π}{3}$=$\sqrt{3}$,
∴ab=4;①
又c2=a2+b2-2ab=22,②
由①、②组成方程组,解得a=2,b=2.

点评 本题考查了正弦定理、余弦定理与三角形的内角和定理的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.过圆O外一点M(a,b)向圆O:x2+y2=r2引两条切线,切点分别为A,B,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如表给出了某校500名12岁男孩中用随机抽样得出的120人的身高(单位cm).
 区间界限[122,126)[126,130)[130,134)[134,138)[138,142)[142,146)
人数  510  22 3320 
 区间界限[146,150)[150,154)[154,158)   
 人数 11 5   
(1)列出样本频率分布表﹔
(2)画出频率分布直方图﹔
(3)估计身高小于134cm的人数占总人数的百分比.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,已知2sinBcosA=sin(A+C).
(1)求角A;
(2)若BC=2,△ABC的面积是$\sqrt{3}$,求AB.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设点(a,b)是区间$\left\{\begin{array}{l}{x+y-4≤0}\\{x>0}\\{y>0}\end{array}\right.$内的随机点,函数f(x)=ax2-4bx+1在区间[1,+∞)上的增函数的概率为(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数y=(x2+bx-4)logax(a>0且a≠1)若对任意x>0,恒有y≤0,则ba的取值范围是(1,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)已知向量$\overrightarrow{a}$=(2,-3),$\overrightarrow{MN}$与$\overrightarrow a$垂直,且|${\overrightarrow{MN}}$|=3$\sqrt{13}$,若点M的坐标为(-3,2),求$\overrightarrow{ON}$(其中O为坐标原点);
(2)设O为△ABC的外心(三角形外接圆的圆心),若$\overrightarrow{AO}$•$\overrightarrow{BC}$=$\frac{1}{2}$|${\overrightarrow{AB}}$|2,求$\frac{{\left|{\overrightarrow{AC}}\right|}}{{\left|{\overrightarrow{AB}}\right|}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若幂函数y=(k-2)xm-2015(k,m∈R)的图象过点$(\frac{1}{2}\;,\;4)$,则k+m=2016.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.若不等式ax2+(a-5)x-2>0的解集为{x|-2<x<-$\frac{1}{4}$}
(1)解不等式2x2+(2-a)x-a>0
(2)求b为的范围,使-ax2+bx+3≥0 的解集为R.

查看答案和解析>>

同步练习册答案