精英家教网 > 高中数学 > 题目详情
15.在△ABC中,已知2sinBcosA=sin(A+C).
(1)求角A;
(2)若BC=2,△ABC的面积是$\sqrt{3}$,求AB.

分析 (1)根据三角形内角和定理与正弦定理,即可求出A的值;  
(2)利用余弦定理和三角形的面积公式,列出方程组即可求出AB的值.

解答 解:(1)由A+B+C=π,得sin(A+C)=sinB; 
所以2sinBcosA=sin(A+C)=sinB,
解得cosA=$\frac{1}{2}$,
又因为A∈(0,π),
所以$A=\frac{π}{3}$;  
(2)由余弦定理,得
BC2=AB2+AC2-2AB•ACcosA=22,①
因为△ABC的面积为
S△ABC=$\frac{1}{2}AB•ACsin\frac{π}{3}=\sqrt{3}$,
所以AB•AC=4,②
由①、②组成方程组,解得AB=BC=2.

点评 本题考查了三角形内角和定理与正弦、余弦定理、三角形面积公式的应用问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.某程序框图如图所示,若n=3,a0=1,a1=2,a2=3,a3=-2,x=2.则该程序运行后输出的值为(  )
A.1B.0C.-1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在△ABC中,AB=3,AC=5,cosA=$\frac{1}{15}$,点P在平面ABC内,且$\overrightarrow{PB}$•$\overrightarrow{PC}$=-4,则|$\overrightarrow{PB}$+$\overrightarrow{PC}$+2$\overrightarrow{PA}$|的最大值是14.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(1)已知函数f(x)=$\frac{{2}^{x}-1}{{2}^{x}+1}$,判断函数的奇偶性,并加以证明.
(2)是否存在a使f(x)=$\frac{a{3}^{x}-1+a}{{3}^{x}+1}$为R上的奇函数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.直线y=x被圆x2+(y-2)2=4截得的弦长为(  )
A.3B.3$\sqrt{3}$C.2$\sqrt{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如图甲,在平行四边形ABCD中,AB=$\sqrt{15}$,AD=$\sqrt{7}$,对角线BD=4,现沿对角线BD把△ABD折起,使点A的位置变成点P,且平面PBD⊥平面BCD如图乙所示,若图乙中三棱锥P-BCD的四个顶点在同一个球的球面上,则该球的表面积为19π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,角A,B,C的对边分别为a,b,c,满足(2b-a)cosC=ccosA.
(1)求角C的大小;
(2)若c=2,且△ABC的面积为$\sqrt{3}$,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若三棱锥的三视图如图所示,则该三棱锥的体积为(  )
A.80B.40C.$\frac{80}{3}$D.$\frac{40}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.f(x)是定义在(-1,1)上的减函数,f(1-a)>f(2a-1),求a的取值范围.

查看答案和解析>>

同步练习册答案