分析 (1)可看出f(x)的定义域为R,并容易得出f(-x)=-f(x),从而得出f(x)为奇函数;
(2)f(x)为R上的奇函数时,一定有f(0)=0,这样即可求出a的值,从而判断出存在a使得f(x)为R上的奇函数.
解答 解:(1)f(x)的定义域为R,且$f(-x)=\frac{{2}^{-x}-1}{{2}^{-x}+1}=\frac{1-{2}^{x}}{1+{2}^{x}}=-\frac{{2}^{x}-1}{{2}^{x}+1}=-f(x)$;
∴f(x)为奇函数;
(2)f(x)为R上的奇函数;
∴$f(0)=\frac{a-1+a}{2}=0$;
∴$a=\frac{1}{2}$;
即存在a=$\frac{1}{2}$使f(x)为R上的奇函数.
点评 考查奇函数的定义,根据函数奇偶性的定义判断函数奇偶性的方法和过程,以及奇函数在原点有定义时,原点处的函数值为0.
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{3}{2}$,+∞) | B. | [$\frac{3}{2}$,+∞) | C. | (-∞,$\frac{3}{2}$) | D. | (-∞,$\frac{3}{2}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 区间界限 | [122,126) | [126,130) | [130,134) | [134,138) | [138,142) | [142,146) |
| 人数 | 5 | 8 | 10 | 22 | 33 | 20 |
| 区间界限 | [146,150) | [150,154) | [154,158) | |||
| 人数 | 11 | 6 | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com